656 research outputs found
Health-related quality of life of long-term high-grade glioma survivors
The objective of this study was to compare the health-related quality of life (HRQOL) of long-term to short-term high-grade glioma (HGG) survivors, determine the prognostic value of HRQOL for overall survival, and determine the effect of tumor recurrence on HRQOL for long-term survivors. Following baseline assessment (after surgery, before radiotherapy), self-perceived HRQOL (using the Medical Outcomes Study Short Form 36 [SF-36]) and brain tumor-specific symptoms (using the 20-item Brain Cancer Module) were assessed every 4 months until 16 months after histological diagnosis. Kaplan-Meier survival analysis and the Cox proportional hazards model were performed to estimate overall survival of patients with impaired scores on the aggregated SF-36 higher-order summary scores measuring physical functioning on a physical component scale and on a mental component scale (MCS). Sixteen patients with a short-term survival (baseline and 4-month follow-up) and 16 with a long-term survival (follow-up until 16 months after diagnosis) were selected out of 68 initially recruited HGG patients. At baseline, the short-term and long-term survivors did not differ in their HRQOL. Between baseline and the 4-month follow-up, HRQOL of short-term survivors deteriorated, whereas the long-term survivors improved to a level comparable to healthy controls. Patients with impaired mental functioning (MCS) at baseline had a shorter median survival than patients with normal functioning. After accounting for differences in patient and tumor characteristics, however, mental functioning was not independently related to poorer overall survival. Not surprisingly, in the group of long-term survivors, the five patients with recurrence had a more compromised HRQOL at the 16-month follow-up compared to the 11 patients without recurrence. We concluded that baseline HRQOL is not related to duration of survival and that long-term survivors show improvement of HRQOL to a level comparable to that of the healthy
A model for spin-polarized transport in perovskite manganite bi-crystal grain boundaries
We have studied the temperature dependence of low-field magnetoresistance and
current-voltage characteristics of a low-angle bi-crystal grain boundary
junction in perovskite manganite La_{2/3}Sr_{1/3}MnO_3 thin film. By gradually
trimming the junction we have been able to reveal the non-linear behavior of
the latter. With the use of the relation M_{GB} \propto M_{bulk}\sqrt{MR^*} we
have extracted the grain boundary magnetization. Further, we demonstrate that
the built-in potential barrier of the grain boundary can be modelled by
V_{bi}\propto M_{bulk}^2 - M_{GB}^2. Thus our model connects the
magnetoresistance with the potential barrier at the grain boundary region. The
results indicate that the band-bending at the grain boundary interface has a
magnetic origin.Comment: 9 pages, 5 figure
Long-Range Forces of QCD
We consider the scattering of two color dipoles (e.g., heavy quarkonium
states) at low energy - a QCD analog of Van der Waals interaction. Even though
the couplings of the dipoles to the gluon field can be described in
perturbation theory, which leads to the potential proportional to
(N_c^2-1)/R^{7}, at large distances R the interaction becomes totally
non-perturbative. Low-energy QCD theorems are used to evaluate the leading
long-distance contribution \sim (N_f^2-1)/(11N_c - 2N_f)^2 R^{-5/2} exp(-2 \mu
R) (\mu is the Goldstone boson mass), which is shown to arise from the
correlated two-boson exchange. The sum rule which relates the overall strength
of the interaction to the energy density of QCD vacuum is derived.
Surprisingly, we find that when the size of the dipoles shrinks to zero (the
heavy quark limit in the case of quarkonia), the non-perturbative part of the
interaction vanishes more slowly than the perturbative part as a consequence of
scale anomaly. As an application, we evaluate elastic \pi J/\psi and \pi J/\psi
\to \pi \psi' cross sections.Comment: 16pages, 9 eps figures; discussion extended, 2 new references added,
to appear in Phys.Rev.
The Self Model and the Conception of Biological Identity in Immunology
The self/non-self model, first proposed by F.M. Burnet, has dominated immunology for sixty years now. According to this model, any foreign element will trigger an immune reaction in an organism, whereas endogenous elements will not, in normal circumstances, induce an immune reaction. In this paper we show that the self/non-self model is no longer an appropriate explanation of experimental data in immunology, and that this inadequacy may be rooted in an excessively strong metaphysical conception of biological identity. We suggest that another hypothesis, one based on the notion of continuity, gives a better account of immune phenomena. Finally, we underscore the mapping between this metaphysical deflation from self to continuity in immunology and the philosophical debate between substantialism and empiricism about identity
Correlation gap in the heavy-fermion antiferromagnet UPd_2Al_3
The optical properties of the heavy-fermion compound UPdAl have been
measured in the frequency range from 0.04 meV to 5 meV (0.3 to 40 cm) at
temperatures K. Below the coherence temperature K, the hybridization gap opens around 10 meV. As the temperature decreases
further ( K), a well pronounced pseudogap of approximately 0.2 meV
develops in the optical response; we relate this to the antiferromagnetic
ordering which occurs below K. The frequency dependent mass and
scattering rate give evidence that the enhancement of the effective mass mainly
occurs below the energy which is associated to the magnetic correlations
between the itinerant and localized 5f electrons. In addition to this
correlation gap, we observe a narrow zero-frequency conductivity peak which at
2 K is less than 0.1 meV wide, and which contains only a fraction of the
delocalized carriers. The analysis of the spectral weight infers a loss of
kinetic energy associated with the superconducting transition.Comment: RevTex, 15 pages, 7 figure
Demonstration of a novel technique to measure two-photon exchange effects in elastic scattering
The discrepancy between proton electromagnetic form factors extracted using
unpolarized and polarized scattering data is believed to be a consequence of
two-photon exchange (TPE) effects. However, the calculations of TPE corrections
have significant model dependence, and there is limited direct experimental
evidence for such corrections. We present the results of a new experimental
technique for making direct comparisons, which has the potential to
make precise measurements over a broad range in and scattering angles. We
use the Jefferson Lab electron beam and the Hall B photon tagger to generate a
clean but untagged photon beam. The photon beam impinges on a converter foil to
generate a mixed beam of electrons, positrons, and photons. A chicane is used
to separate and recombine the electron and positron beams while the photon beam
is stopped by a photon blocker. This provides a combined electron and positron
beam, with energies from 0.5 to 3.2 GeV, which impinges on a liquid hydrogen
target. The large acceptance CLAS detector is used to identify and reconstruct
elastic scattering events, determining both the initial lepton energy and the
sign of the scattered lepton. The data were collected in two days with a
primary electron beam energy of only 3.3 GeV, limiting the data from this run
to smaller values of and scattering angle. Nonetheless, this measurement
yields a data sample for with statistics comparable to those of the
best previous measurements. We have shown that we can cleanly identify elastic
scattering events and correct for the difference in acceptance for electron and
positron scattering. The final ratio of positron to electron scattering:
for GeV and
High non-photonic electron production in + collisions at = 200 GeV
We present the measurement of non-photonic electron production at high
transverse momentum ( 2.5 GeV/) in + collisions at
= 200 GeV using data recorded during 2005 and 2008 by the STAR
experiment at the Relativistic Heavy Ion Collider (RHIC). The measured
cross-sections from the two runs are consistent with each other despite a large
difference in photonic background levels due to different detector
configurations. We compare the measured non-photonic electron cross-sections
with previously published RHIC data and pQCD calculations. Using the relative
contributions of B and D mesons to non-photonic electrons, we determine the
integrated cross sections of electrons () at 3 GeV/10 GeV/ from bottom and charm meson decays to be = 4.0({\rm
stat.})({\rm syst.}) nb and =
6.2({\rm stat.})({\rm syst.}) nb, respectively.Comment: 17 pages, 17 figure
- âŠ