656 research outputs found

    Health-related quality of life of long-term high-grade glioma survivors

    Get PDF
    The objective of this study was to compare the health-related quality of life (HRQOL) of long-term to short-term high-grade glioma (HGG) survivors, determine the prognostic value of HRQOL for overall survival, and determine the effect of tumor recurrence on HRQOL for long-term survivors. Following baseline assessment (after surgery, before radiotherapy), self-perceived HRQOL (using the Medical Outcomes Study Short Form 36 [SF-36]) and brain tumor-specific symptoms (using the 20-item Brain Cancer Module) were assessed every 4 months until 16 months after histological diagnosis. Kaplan-Meier survival analysis and the Cox proportional hazards model were performed to estimate overall survival of patients with impaired scores on the aggregated SF-36 higher-order summary scores measuring physical functioning on a physical component scale and on a mental component scale (MCS). Sixteen patients with a short-term survival (baseline and 4-month follow-up) and 16 with a long-term survival (follow-up until 16 months after diagnosis) were selected out of 68 initially recruited HGG patients. At baseline, the short-term and long-term survivors did not differ in their HRQOL. Between baseline and the 4-month follow-up, HRQOL of short-term survivors deteriorated, whereas the long-term survivors improved to a level comparable to healthy controls. Patients with impaired mental functioning (MCS) at baseline had a shorter median survival than patients with normal functioning. After accounting for differences in patient and tumor characteristics, however, mental functioning was not independently related to poorer overall survival. Not surprisingly, in the group of long-term survivors, the five patients with recurrence had a more compromised HRQOL at the 16-month follow-up compared to the 11 patients without recurrence. We concluded that baseline HRQOL is not related to duration of survival and that long-term survivors show improvement of HRQOL to a level comparable to that of the healthy

    A model for spin-polarized transport in perovskite manganite bi-crystal grain boundaries

    Full text link
    We have studied the temperature dependence of low-field magnetoresistance and current-voltage characteristics of a low-angle bi-crystal grain boundary junction in perovskite manganite La_{2/3}Sr_{1/3}MnO_3 thin film. By gradually trimming the junction we have been able to reveal the non-linear behavior of the latter. With the use of the relation M_{GB} \propto M_{bulk}\sqrt{MR^*} we have extracted the grain boundary magnetization. Further, we demonstrate that the built-in potential barrier of the grain boundary can be modelled by V_{bi}\propto M_{bulk}^2 - M_{GB}^2. Thus our model connects the magnetoresistance with the potential barrier at the grain boundary region. The results indicate that the band-bending at the grain boundary interface has a magnetic origin.Comment: 9 pages, 5 figure

    Long-Range Forces of QCD

    Get PDF
    We consider the scattering of two color dipoles (e.g., heavy quarkonium states) at low energy - a QCD analog of Van der Waals interaction. Even though the couplings of the dipoles to the gluon field can be described in perturbation theory, which leads to the potential proportional to (N_c^2-1)/R^{7}, at large distances R the interaction becomes totally non-perturbative. Low-energy QCD theorems are used to evaluate the leading long-distance contribution \sim (N_f^2-1)/(11N_c - 2N_f)^2 R^{-5/2} exp(-2 \mu R) (\mu is the Goldstone boson mass), which is shown to arise from the correlated two-boson exchange. The sum rule which relates the overall strength of the interaction to the energy density of QCD vacuum is derived. Surprisingly, we find that when the size of the dipoles shrinks to zero (the heavy quark limit in the case of quarkonia), the non-perturbative part of the interaction vanishes more slowly than the perturbative part as a consequence of scale anomaly. As an application, we evaluate elastic \pi J/\psi and \pi J/\psi \to \pi \psi' cross sections.Comment: 16pages, 9 eps figures; discussion extended, 2 new references added, to appear in Phys.Rev.

    The Self Model and the Conception of Biological Identity in Immunology

    Get PDF
    The self/non-self model, first proposed by F.M. Burnet, has dominated immunology for sixty years now. According to this model, any foreign element will trigger an immune reaction in an organism, whereas endogenous elements will not, in normal circumstances, induce an immune reaction. In this paper we show that the self/non-self model is no longer an appropriate explanation of experimental data in immunology, and that this inadequacy may be rooted in an excessively strong metaphysical conception of biological identity. We suggest that another hypothesis, one based on the notion of continuity, gives a better account of immune phenomena. Finally, we underscore the mapping between this metaphysical deflation from self to continuity in immunology and the philosophical debate between substantialism and empiricism about identity

    Correlation gap in the heavy-fermion antiferromagnet UPd_2Al_3

    Full text link
    The optical properties of the heavy-fermion compound UPd2_2Al3_3 have been measured in the frequency range from 0.04 meV to 5 meV (0.3 to 40 cm−1^{-1}) at temperatures 2K<T<3002 {\rm K}<T< 300 K. Below the coherence temperature T∗≈50T^*\approx 50 K, the hybridization gap opens around 10 meV. As the temperature decreases further (T≀20T\leq 20 K), a well pronounced pseudogap of approximately 0.2 meV develops in the optical response; we relate this to the antiferromagnetic ordering which occurs below TN≈14T_N\approx 14 K. The frequency dependent mass and scattering rate give evidence that the enhancement of the effective mass mainly occurs below the energy which is associated to the magnetic correlations between the itinerant and localized 5f electrons. In addition to this correlation gap, we observe a narrow zero-frequency conductivity peak which at 2 K is less than 0.1 meV wide, and which contains only a fraction of the delocalized carriers. The analysis of the spectral weight infers a loss of kinetic energy associated with the superconducting transition.Comment: RevTex, 15 pages, 7 figure

    Demonstration of a novel technique to measure two-photon exchange effects in elastic e±pe^\pm p scattering

    Full text link
    The discrepancy between proton electromagnetic form factors extracted using unpolarized and polarized scattering data is believed to be a consequence of two-photon exchange (TPE) effects. However, the calculations of TPE corrections have significant model dependence, and there is limited direct experimental evidence for such corrections. We present the results of a new experimental technique for making direct e±pe^\pm p comparisons, which has the potential to make precise measurements over a broad range in Q2Q^2 and scattering angles. We use the Jefferson Lab electron beam and the Hall B photon tagger to generate a clean but untagged photon beam. The photon beam impinges on a converter foil to generate a mixed beam of electrons, positrons, and photons. A chicane is used to separate and recombine the electron and positron beams while the photon beam is stopped by a photon blocker. This provides a combined electron and positron beam, with energies from 0.5 to 3.2 GeV, which impinges on a liquid hydrogen target. The large acceptance CLAS detector is used to identify and reconstruct elastic scattering events, determining both the initial lepton energy and the sign of the scattered lepton. The data were collected in two days with a primary electron beam energy of only 3.3 GeV, limiting the data from this run to smaller values of Q2Q^2 and scattering angle. Nonetheless, this measurement yields a data sample for e±pe^\pm p with statistics comparable to those of the best previous measurements. We have shown that we can cleanly identify elastic scattering events and correct for the difference in acceptance for electron and positron scattering. The final ratio of positron to electron scattering: R=1.027±0.005±0.05R=1.027\pm0.005\pm0.05 for =0.206=0.206 GeV2^2 and 0.830≀ϔ≀0.9430.830\leq \epsilon\leq 0.943

    High pTp_{T} non-photonic electron production in pp+pp collisions at s\sqrt{s} = 200 GeV

    Get PDF
    We present the measurement of non-photonic electron production at high transverse momentum (pT>p_T > 2.5 GeV/cc) in pp + pp collisions at s\sqrt{s} = 200 GeV using data recorded during 2005 and 2008 by the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The measured cross-sections from the two runs are consistent with each other despite a large difference in photonic background levels due to different detector configurations. We compare the measured non-photonic electron cross-sections with previously published RHIC data and pQCD calculations. Using the relative contributions of B and D mesons to non-photonic electrons, we determine the integrated cross sections of electrons (e++e−2\frac{e^++e^-}{2}) at 3 GeV/c<pT< c < p_T <~10 GeV/cc from bottom and charm meson decays to be dσ(B→e)+(B→D→e)dye∣ye=0{d\sigma_{(B\to e)+(B\to D \to e)} \over dy_e}|_{y_e=0} = 4.0±0.5\pm0.5({\rm stat.})±1.1\pm1.1({\rm syst.}) nb and dσD→edye∣ye=0{d\sigma_{D\to e} \over dy_e}|_{y_e=0} = 6.2±0.7\pm0.7({\rm stat.})±1.5\pm1.5({\rm syst.}) nb, respectively.Comment: 17 pages, 17 figure
    • 

    corecore