5,262 research outputs found

    Reasoning About Pragmatics with Neural Listeners and Speakers

    Full text link
    We present a model for pragmatically describing scenes, in which contrastive behavior results from a combination of inference-driven pragmatics and learned semantics. Like previous learned approaches to language generation, our model uses a simple feature-driven architecture (here a pair of neural "listener" and "speaker" models) to ground language in the world. Like inference-driven approaches to pragmatics, our model actively reasons about listener behavior when selecting utterances. For training, our approach requires only ordinary captions, annotated _without_ demonstration of the pragmatic behavior the model ultimately exhibits. In human evaluations on a referring expression game, our approach succeeds 81% of the time, compared to a 69% success rate using existing techniques

    Learning with Latent Language

    Full text link
    The named concepts and compositional operators present in natural language provide a rich source of information about the kinds of abstractions humans use to navigate the world. Can this linguistic background knowledge improve the generality and efficiency of learned classifiers and control policies? This paper aims to show that using the space of natural language strings as a parameter space is an effective way to capture natural task structure. In a pretraining phase, we learn a language interpretation model that transforms inputs (e.g. images) into outputs (e.g. labels) given natural language descriptions. To learn a new concept (e.g. a classifier), we search directly in the space of descriptions to minimize the interpreter's loss on training examples. Crucially, our models do not require language data to learn these concepts: language is used only in pretraining to impose structure on subsequent learning. Results on image classification, text editing, and reinforcement learning show that, in all settings, models with a linguistic parameterization outperform those without

    Translating Neuralese

    Full text link
    Several approaches have recently been proposed for learning decentralized deep multiagent policies that coordinate via a differentiable communication channel. While these policies are effective for many tasks, interpretation of their induced communication strategies has remained a challenge. Here we propose to interpret agents' messages by translating them. Unlike in typical machine translation problems, we have no parallel data to learn from. Instead we develop a translation model based on the insight that agent messages and natural language strings mean the same thing if they induce the same belief about the world in a listener. We present theoretical guarantees and empirical evidence that our approach preserves both the semantics and pragmatics of messages by ensuring that players communicating through a translation layer do not suffer a substantial loss in reward relative to players with a common language.Comment: Fixes typos and cleans ups some model presentation detail

    Unified Pragmatic Models for Generating and Following Instructions

    Full text link
    We show that explicit pragmatic inference aids in correctly generating and following natural language instructions for complex, sequential tasks. Our pragmatics-enabled models reason about why speakers produce certain instructions, and about how listeners will react upon hearing them. Like previous pragmatic models, we use learned base listener and speaker models to build a pragmatic speaker that uses the base listener to simulate the interpretation of candidate descriptions, and a pragmatic listener that reasons counterfactually about alternative descriptions. We extend these models to tasks with sequential structure. Evaluation of language generation and interpretation shows that pragmatic inference improves state-of-the-art listener models (at correctly interpreting human instructions) and speaker models (at producing instructions correctly interpreted by humans) in diverse settings.Comment: NAACL 2018, camera-ready versio

    The polymer mat: Arrested rebound of a compressed polymer layer

    Full text link
    Compression of an adsorbed polymer layer distorts its relaxed structure. Surface force measurements from different laboratories show that the return to this relaxed structure after the compression is released can be slowed to the scale of tens of minutes and that the recovery time grows rapidly with molecular weight. We argue that the arrested state of the free layer before relaxation can be described as a Guiselin brush structure1, in which the surface excess lies at heights of the order of the layer thickness, unlike an adsorbed layer. This brush structure predicts an exponential falloff of the force at large distance with a decay length that varies as the initial compression distance to the 6/5 power. This exponential falloff is consistent with surface force measurements. We propose a relaxation mechanism that accounts for the increase in relaxation time with chain length.Comment: 24 pages, 5 figre
    • …
    corecore