329 research outputs found
Recommended from our members
Ion-particle interactions during particle formation and growth at a coniferous forest site in central Europe
In this work, we examined the interaction of ions and neutral particles during atmospheric new particle formation (NPF) events. The analysis is based on simultaneous field measurements of atmospheric ions and total particles using a neutral cluster and air ion spectrometer (NAIS) across the diameter range 2–25 nm. The Waldstein research site is located in a spruce forest in NE Bavaria, Southern Germany, known for enhanced radon concentrations, presumably leading to elevated ionization rates. Our observations show that the occurrence of the ion nucleation mode preceded that of the total particle nucleation mode during all analyzed NPF events. The time difference between the appearance of 2 nm ions and 2 nm total particles was typically about 20 to 30 min. A cross correlation analysis showed a rapid decrease of the time difference between the ion and total modes during the growth process. Eventually, this time delay vanished when both ions and total particles did grow to larger diameters. Considering the growth rates of ions and total particles separately, total particles exhibited enhanced growth rates at diameters below 15 nm. This observation cannot be explained by condensation or coagulation, because these processes would act more efficiently on charged particles compared to neutral particles. To explain our observations, we propose a mechanism including recombination and attachment of continuously present cluster ions with the ion nucleation mode and the neutral nucleation mode, respectively
Thomae type formulae for singular Z_N curves
We give an elementary and rigorous proof of the Thomae type formula for
singular curves. To derive the Thomae formula we use the traditional
variational method which goes back to Riemann, Thomae and Fuchs.Comment: 22 page
Role of electrostatic interactions in amyloid beta-protein (Abeta) oligomer formation: A discrete molecular dynamics study
Pathological folding and oligomer formation of the amyloid beta-protein
(Abeta) are widely perceived as central to Alzheimer's disease (AD).
Experimental approaches to study Abeta self-assembly are problematic, because
most relevant aggregates are quasi-stable and inhomogeneous. We apply a
discrete molecular dynamics (DMD) approach combined with a four-bead protein
model to study oligomer formation of the amyloid beta-protein (Abeta). We
address the differences between the two most common Abeta alloforms, Abeta40
and Abeta42, which oligomerize differently in vitro. We study how the presence
of electrostatic interactions (EIs) between pairs of charged amino acids
affects Abeta40 and Abeta42 oligomer formation. Our results indicate that EIs
promote formation of larger oligomers in both Abeta40 and Abeta42. The Abeta40
size distribution remains unimodal, whereas the Abeta42 distribution is
trimodal, as observed experimentally. Abeta42 folded structure is characterized
by a turn in the C-terminus that is not present in Abeta40. We show that the
same C-terminal region is also responsible for the strongest intermolecular
contacts in Abeta42 pentamers and larger oligomers. Our results suggest that
this C-terminal region plays a key role in the formation of Abeta42 oligomers
and the relative importance of this region increases in the presence of EIs.
These results suggest that inhibitors targeting the C-terminal region of
Abeta42 oligomers may be able to prevent oligomer formation or structurally
modify the assemblies to reduce their toxicity.Comment: Accepted for publication at Biophysical Journa
On the solutions of the Schrodinger equation with some molecular potentials: wave function ansatz
Making an ansatz to the wave function, the exact solutions of the %
-dimensional radial Schrodinger equation with some molecular potentials like
pseudoharmonic and modified Kratzer potentials are obtained. The restriction on
the parameters of the given potential, and are also given,
where depends on a linear combination of the angular momentum quantum
number and the spatial dimensions and is a parameter in
the ansatz to the wave function. On inserting D=3, we find that the bound state
eigensolutions recover their standard analytical forms in literature.Comment: 14 page
Evolution of deformation and recrystallization textures in high-purity Ni and the Ni-5 at. pct W alloy
An attempt has been made to study the evolution of texture in high-purity Ni and Ni-5 at. pct W alloy prepared by the powder metallurgy route followed by heavy cold rolling (∼95 pct deformation) and recrystallization. The deformation textures of the two materials are of typical pure metal or Cu-type texture. Cube-oriented ({001} {100}) regions are present in the deformed state as long thin bands, elongated in the rolling direction (RD). These bands are characterized by a high orientation gradient inside, which is a result of the rotation of the cube-oriented cells around the RD toward the RD-rotated cube ({013} {100}). Low-temperature annealing produces a weak cube texture along with the {013} {100} component, with the latter being much stronger in high-purity Ni than in the Ni-W alloy. At higher temperatures, the cube texture is strengthened considerably in the Ni-W alloy; however, the cube volume fraction in high-purity Ni is significantly lower because of the retention of the {013} {100} component. The difference in the relative strengths of the cube, and the {013} {100} components in the two materials is evident from the beginning of recrystallization in which more {013} {100} -oriented grains than near cube grains form in high-purity Ni. The preferential nucleation of the near cube and the {013} {100} grains in these materials seems to be a result of the high orientation gradients associated with the cube bands that offer a favorable environment for early nucleation
Identifying and understanding cognitive profiles in multiple sclerosis: a role for visuospatial memory functioning
BackgroundThe heterogeneous nature of cognitive impairment in people with multiple sclerosis (PwMS) hampers understanding of the underlying mechanisms and developing patient-tailored interventions. We aim to identify and classify cognitive profiles in PwMS, comparing these to cognitive status (preserved versus impaired).MethodsWe included 1213 PwMS (72% female, age 45.4 ± 10.7 years, 83% relapsing–remitting MS). Cognitive test scores were converted to Z-scores compared to healthy controls for the functions: attention, inhibition, information processing speed (IPS), verbal fluency and verbal/visuospatial memory. Concerning cognitive status, impaired cognition (CI) was defined as performing at Z ≤ − 1.5 SD on ≥ 2 functions. Cognitive profiles were constructed using latent profile analysis on all cognitive functions. Cognitive profiles or status was classified using gradient boosting decision trees, providing the importance of each feature (demographics, clinical, cognitive and psychological functioning) for the overall classification.ResultsSix profiles were identified, showing variations in overall performance and specific deficits (attention, inhibition, IPS, verbal fluency, verbal memory and visuospatial memory). Across the profiles, IPS was the most impaired function (%CI most preserved profile, Profile 1 = 22.4%; %CI most impaired profile, Profile 6 = 76.6%). Cognitive impairment varied from 11.8% in Profile 1 to 95.3% in Profile 6. Of all cognitive functions, visuospatial memory was most important in classifying profiles and IPS the least (area under the curve (AUC) = 0.910). For cognitive status, IPS was the most important classifier (AUC = 0.997).ConclusionsThis study demonstrated that cognitive heterogeneity in MS reflects a continuum of cognitive severity, distinguishable by distinct cognitive profiles, primarily explained by variations in visuospatial memory functioning.Health and self-regulatio
A multimodal marker for cognitive functioning in multiple sclerosis: the role of NfL, GFAP and conventional MRI in predicting cognitive functioning in a prospective clinical cohort
Health and self-regulatio
Energy Flow in the Hadronic Final State of Diffractive and Non-Diffractive Deep-Inelastic Scattering at HERA
An investigation of the hadronic final state in diffractive and
non--diffractive deep--inelastic electron--proton scattering at HERA is
presented, where diffractive data are selected experimentally by demanding a
large gap in pseudo --rapidity around the proton remnant direction. The
transverse energy flow in the hadronic final state is evaluated using a set of
estimators which quantify topological properties. Using available Monte Carlo
QCD calculations, it is demonstrated that the final state in diffractive DIS
exhibits the features expected if the interaction is interpreted as the
scattering of an electron off a current quark with associated effects of
perturbative QCD. A model in which deep--inelastic diffraction is taken to be
the exchange of a pomeron with partonic structure is found to reproduce the
measurements well. Models for deep--inelastic scattering, in which a
sizeable diffractive contribution is present because of non--perturbative
effects in the production of the hadronic final state, reproduce the general
tendencies of the data but in all give a worse description.Comment: 22 pages, latex, 6 Figures appended as uuencoded fil
A Search for Selectrons and Squarks at HERA
Data from electron-proton collisions at a center-of-mass energy of 300 GeV
are used for a search for selectrons and squarks within the framework of the
minimal supersymmetric model. The decays of selectrons and squarks into the
lightest supersymmetric particle lead to final states with an electron and
hadrons accompanied by large missing energy and transverse momentum. No signal
is found and new bounds on the existence of these particles are derived. At 95%
confidence level the excluded region extends to 65 GeV for selectron and squark
masses, and to 40 GeV for the mass of the lightest supersymmetric particle.Comment: 13 pages, latex, 6 Figure
- …