54,070 research outputs found
Exact relativistic treatment of stationary counter-rotating dust disks III. Physical Properties
This is the third in a series of papers on the construction of explicit
solutions to the stationary axisymmetric Einstein equations which can be
interpreted as counter-rotating disks of dust. We discuss the physical
properties of a class of solutions to the Einstein equations for disks with
constant angular velocity and constant relative density which was constructed
in the first part. The metric for these spacetimes is given in terms of theta
functions on a Riemann surface of genus 2. It is parameterized by two physical
parameters, the central redshift and the relative density of the two
counter-rotating streams in the disk. We discuss the dependence of the metric
on these parameters using a combination of analytical and numerical methods.
Interesting limiting cases are the Maclaurin disk in the Newtonian limit, the
static limit which gives a solution of the Morgan and Morgan class and the
limit of a disk without counter-rotation. We study the mass and the angular
momentum of the spacetime. At the disk we discuss the energy-momentum tensor,
i.e. the angular velocities of the dust streams and the energy density of the
disk. The solutions have ergospheres in strongly relativistic situations. The
ultrarelativistic limit of the solution in which the central redshift diverges
is discussed in detail: In the case of two counter-rotating dust components in
the disk, the solutions describe a disk with diverging central density but
finite mass. In the case of a disk made up of one component, the exterior of
the disks can be interpreted as the extreme Kerr solution.Comment: 30 pages, 20 figures; to appear in Phys. Rev.
Collisionless Isotropization of the Solar-Wind Protons by Compressive Fluctuations and Plasma Instabilities
Compressive fluctuations are a minor yet significant component of
astrophysical plasma turbulence. In the solar wind, long-wavelength compressive
slow-mode fluctuations lead to changes in and in , where and are the perpendicular and parallel
temperatures of the protons, is the magnetic field strength, and
is the proton density. If the amplitude of the compressive
fluctuations is large enough, crosses one or more instability
thresholds for anisotropy-driven microinstabilities. The enhanced field
fluctuations from these microinstabilities scatter the protons so as to reduce
the anisotropy of the pressure tensor. We propose that this scattering drives
the average value of away from the marginal stability boundary
until the fluctuating value of stops crossing the boundary. We
model this "fluctuating-anisotropy effect" using linear Vlasov--Maxwell theory
to describe the large-scale compressive fluctuations. We argue that this effect
can explain why, in the nearly collisionless solar wind, the average value of
is close to unity.Comment: 11 pages, published in Ap
Strongly Coupled Matter-Field and Non-Analytic Decay Rate of Dipole Molecules in a Waveguide
The decay rate \gam of an excited dipole molecule inside a waveguide is
evaluated for the strongly coupled matter-field case near a cutoff frequency
\ome_c without using perturbation analysis. Due to the singularity in the
density of photon states at the cutoff frequency, we find that \gam depends
non-analytically on the coupling constant as . In contrast
to the ordinary evaluation of \gam which relies on the Fermi golden rule
(itself based on perturbation analysis), \gam has an upper bound and does not
diverge at \ome_c even if we assume perfect conductance in the waveguide
walls. As a result, again in contrast to the statement found in the literature,
the speed of emitted light from the molecule does not vanish at \ome_c and is
proportional to which is on the order of m/s for
typical dipole molecules.Comment: 4 pages, 2 figure
Recent s from IceCube
IceCube is a 1 km neutrino detector now being built at the South Pole.
Its 4800 optical modules will detect Cherenkov radiation from charged particles
produced in neutrino interactions. IceCube will search for neutrinos of
astrophysical origin, with energies from 100 GeV up to eV. It will be
able to separate , and . In addition to detecting
astrophysical neutrinos, IceCube will also search for neutrinos from WIMP
annihilation in the Sun and the Earth, look for low-energy (10 MeV) neutrinos
from supernovae, and search for a host of exotic signatures. With the
associated IceTop surface air shower array, it will study cosmic-ray air
showers.
IceCube construction is now 50% complete. After presenting preliminary
results from the partial detector, I will discuss IceCube's future plans.Comment: Invited talk presented at Neutrino 2008; 7 page
Analytical design and simulation evaluation of an approach flight director system for a jet STOL aircraft
A program was undertaken to develop design criteria and operational procedures for STOL transport aircraft. As part of that program, a series of flight tests shall be performed in an Augmentor Wing Jet STOL Aircraft. In preparation for the flight test programs, an analytical study was conducted to gain an understanding of the characteristics of the vehicle for manual control, to assess the relative merits of the variety of manual control techniques available with attitude and thrust vector controllers, and to determine what improvements can be made over manual control of the bare airframe by providing the pilot with suitable command guidance information and by augmentation of the bare airframe dynamics. The objective of the study is to apply closed-loop pilot/vehicle analysis techniques to the analysis of manual flight control of powered-lift STOL aircraft in the landing approach and to the design and experimental verification of an advanced flight director display
Structural and mechanical effects of interstitial sinks
Changes in structure and mechanical properties due to loss of interstitials to reactive metal coatings studied in dispersion strengthened niobium alloy
- …