64 research outputs found

    The multi-scale nature of the solar wind

    Full text link
    The solar wind is a magnetized plasma and as such exhibits collective plasma behavior associated with its characteristic spatial and temporal scales. The characteristic length scales include the size of the heliosphere, the collisional mean free paths of all species, their inertial lengths, their gyration radii, and their Debye lengths. The characteristic timescales include the expansion time, the collision times, and the periods associated with gyration, waves, and oscillations. We review the past and present research into the multi-scale nature of the solar wind based on in-situ spacecraft measurements and plasma theory. We emphasize that couplings of processes across scales are important for the global dynamics and thermodynamics of the solar wind. We describe methods to measure in-situ properties of particles and fields. We then discuss the role of expansion effects, non-equilibrium distribution functions, collisions, waves, turbulence, and kinetic microinstabilities for the multi-scale plasma evolution.Comment: 155 pages, 24 figure

    Nature of stochastic ion heating in the solar wind: testing the dependence on plasma beta and turbulence amplitude

    Full text link
    The solar wind undergoes significant heating as it propagates away from the Sun; the exact mechanisms responsible for this heating are not yet fully understood. We present for the first time a statistical test for one of the proposed mechanisms, stochastic ion heating. We use the amplitude of magnetic field fluctuations near the proton gyroscale as a proxy for the ratio of gyroscale velocity fluctuations to perpendicular (with respect to the magnetic field) proton thermal speed, defined as ϵp\epsilon_p. Enhanced proton temperatures are observed when ϵp\epsilon_p is larger than a critical value (∼0.019−0.025\sim 0.019 - 0.025). This enhancement strongly depends on the proton plasma beta (β∣∣p\beta_{||p}); when β∣∣p≪1\beta_{||p} \ll 1 only the perpendicular proton temperature T⊥T_{\perp} increases, while for β∣∣p∼1\beta_{||p} \sim 1 increased parallel and perpendicular proton temperatures are both observed. For ϵp\epsilon_p smaller than the critical value and β∣∣p≪1\beta_{||p} \ll 1 no enhancement of TpT_p is observed while for β∣∣p∼1\beta_{||p} \sim 1 minor increases in T∥T_{\parallel} are measured. The observed change of proton temperatures across a critical threshold for velocity fluctuations is in agreement with the stochastic ion heating model of Chandran et al. (2010). We find that ϵp>ϵcrit\epsilon_p > \epsilon_{\rm crit} in 76\% of the studied periods implying that stochastic heating may operate most of the time in the solar wind at 1 AU.Comment: Accepted for publication in The Astrophysical Journal Letter

    Astrophysical gyrokinetics: Turbulence in pressure-anisotropic plasmas at ion scales and beyond

    Full text link
    We present a theoretical framework for describing electromagnetic kinetic turbulence in a multi-species, magnetized, pressure-anisotropic plasma. Turbulent fluctuations are assumed to be small compared to the mean field, to be spatially anisotropic with respect to it, and to have frequencies small compared to the ion cyclotron frequency. At scales above the ion Larmor radius, the theory reduces to the pressure-anisotropic generalization of kinetic reduced magnetohydrodynamics (KRMHD) formulated by Kunz et al. (2015). At scales at and below the ion Larmor radius, three main objectives are achieved. First, we analyse the linear response of the pressure-anisotropic gyrokinetic system, and show it to be a generalisation of previously explored limits. The effects of pressure anisotropy on the stability and collisionless damping of Alfvenic and compressive fluctuations are highlighted, with attention paid to the spectral location and width of the frequency jump that occurs as Alfven waves transition into kinetic Alfven waves. Secondly, we derive and discuss a general free-energy conservation law, which captures both the KRMHD free-energy conservation at long wavelengths and dual cascades of kinetic Alfven waves and ion entropy at sub-ion-Larmor scales. We show that non-Maxwellian features in the distribution function change the amount of phase mixing and the efficiency of magnetic stresses, and thus influence the partitioning of free energy amongst the cascade channels. Thirdly, a simple model is used to show that pressure anisotropy can cause large variations in the ion-to-electron heating ratio due to the dissipation of Alfvenic turbulence. Our theory provides a foundation for determining how pressure anisotropy affects the turbulent fluctuation spectra, the differential heating of particle species, and the ratio of parallel and perpendicular phase mixing in space and astrophysical plasmas.Comment: 59 pages, 6 figures, accepted for publication in Journal of Plasma Physics (original 28 Nov 2017); abstract abridge

    Ion-Driven Instabilities in the Inner Heliosphere II: Classification and Multi-Dimensional Mapping

    Full text link
    Linear theory is a well developed framework for characterizing instabilities in weakly collisional plasmas, such as the solar wind. In the previous instalment of this series, we analyzed ~1.5M proton and alpha particle Velocity Distribution Functions (VDFs) observed by Helios I and II to determine the statistical properties of the standard instability parameters such as the growth rate, frequency, the direction of wave propagation, and the power emitted or absorbed by each component, as well as to characterize their behavior with respect to the distance from the Sun and collisional processing. In this work, we use this comprehensive set of instability calculations to train a Machine Learning algorithm consisting of three interlaced components that: 1) predict if an interval is unstable from observed VDF parameters; 2) predict the instability properties for a given unstable VDF; and 3) classify the type of the unstable mode. We use these methods to map the properties in multi-dimensional phase space to find that the parallel-propagating, proton-core-induced Ion Cyclotron mode dominates the young solar wind, while the oblique Fast Magnetosonic mode regulates the proton beam drift in the collisionally old plasma

    Strong Preferential Ion Heating is Limited to within the Solar Alfvén Surface

    Get PDF
    The decay of the solar wind helium-to-hydrogen temperature ratio due to Coulomb thermalization can be used to measure how far from the Sun strong preferential ion heating occurs. Previous work has shown that a zone of preferential ion heating, resulting in mass-proportional temperatures, extends about 20-40 R-circle dot from the Sun on average. Here we look at the motion of the outer boundary of this zone with time and compare it to other physically meaningful distances. We report that the boundary moves in lockstep with the Alfven point over the solar cycle, contracting and expanding with solar activity with a correlation coefficient of better than 0.95 and with an rms difference of 4.23 R-circle dot. Strong preferential ion heating is apparently predominately active below the Alfven surface. To definitively identify the underlying preferential heating mechanisms, it will be necessary to make in situ measurements of the local plasma conditions below the Alfven surface. We predict that the Parker Solar Probe (PSP) will be the first spacecraft to directly observe this heating in action, but only a couple of years after launch as activity increases, the zone expands, and PSP's perihelion drops.Wind grant [NNX14AR78G]; NASA HSR grant [NNX16AM23G]Open access articleThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    A Modified Version of Taylor's Hypothesis for Solar Probe Plus Observations

    Get PDF
    The Solar Probe Plus (SPP) spacecraft will explore the near-Sun environment, reaching heliocentric distances less than 10R⊙10 R_{\odot}. Near Earth, spacecraft measurements of fluctuating velocities and magnetic fields taken in the time domain are translated into information about the spatial structure of the solar wind via Taylor's "frozen turbulence" hypothesis. Near the perihelion of SPP, however, the solar-wind speed is comparable to the Alfv\'en speed, and Taylor's hypothesis in its usual form does not apply. In this paper, we show that, under certain assumptions, a modified version of Taylor's hypothesis can be recovered in the near-Sun region. We consider only the transverse, non-compressive component of the fluctuations at length scales exceeding the proton gyroradius, and we describe these fluctuations using an approximate theoretical framework developed by Heinemann and Olbert. We show that fluctuations propagating away from the Sun in the plasma frame obey a relation analogous to Taylor's hypothesis when Vsc,⊥≫z−V_{\rm sc,\perp} \gg z^- and z+≫z−z^+ \gg z^-, where Vsc,⊥V_{\rm sc,\perp} is the component of the spacecraft velocity perpendicular to the mean magnetic field and z+\bm{z}^+ (z−\bm{z}^-) is the Elsasser variable corresponding to transverse, non-compressive fluctuations propagating away from (towards) the Sun in the plasma frame. Observations and simulations suggest that, in the near-Sun solar wind, the above inequalities are satisfied and z+\bm{z}^+ fluctuations account for most of the fluctuation energy. The modified form of Taylor's hypothesis that we derive may thus make it possible to characterize the spatial structure of the energetically dominant component of the turbulence encountered by SPP.Comment: 5 pages, 1 figure, accepted in ApJ Lette
    • …
    corecore