3,528 research outputs found
Dynamic predicting by landmarking as an alternative for multi-state modeling: an application to acute lymphoid leukemia data
This paper considers the problem of obtaining a dynamic prediction for 5-year failure free survival after bone marrow transplantation in ALL patients using data from the EBMT, the European Group for Blood and Marrow Transplantation. The paper compares the new landmark methodology as developed by the first author and the established multi-state modeling as described in a recent Tutorial in Biostatistics in Statistics in Medicine by the second author and colleagues. As expected the two approaches give similar results. The landmark methodology does not need complex modeling and leads to easy prediction rules. On the other hand, it does not give the insight in the biological processes as obtained for the multi-state model
The role of thyroid hormone nuclear receptors in the heart: evidence from pharmacological approaches
This review evaluates the hypothesis that the cardiac effects of amiodarone can be explained—at least partly—by the induction of a local ‘hypothyroid-like condition’ in the heart. Evidence supporting the hypothesis comprises the observation that amiodarone exerts an inhibitory effect on the binding of T3 to thyroid hormone receptors (TR) alpha-1 and beta-1 in vitro, and on the expression of particular T3-dependent genes in vivo. In the heart, amiodarone decreases heart rate and alpha myosin heavy chain expression (mediated via TR alpha-1), and increases sarcoplasmic reticulum calcium-activated ATPase and beta myosin heavy chain expression (mediated via TR beta-1). Recent data show a significant similarity in expression profiles of 8,435 genes in the heart of hypothyroid and amiodarone-treated animals, although similarities do not always exist in transcripts of ion channel genes. Induction of a hypothyroid cardiac phenotype by amiodarone may be advantageous by decreasing energy demands and increasing energy availability
Properties of small molecular drug loading and diffusion in a fluorinated PEG hydrogel studied by ^1H molecular diffusion NMR and ^(19)F spin diffusion NMR
R_f-PEG (fluoroalkyl double-ended poly(ethylene glycol)) hydrogel is potentially useful as a drug delivery depot due to its advanced properties of sol–gel two-phase coexistence and low surface erosion. In this study, ^1H molecular diffusion nuclear magnetic resonance (NMR) and ^(19)F spin diffusion NMR were used to probe the drug loading and diffusion properties of the R_f-PEG hydrogel for small anticancer drugs, 5-fluorouracil (FU) and its hydrophobic analog, 1,3-dimethyl-5-fluorouracil (DMFU). It was found that FU has a larger apparent diffusion coefficient than that of DMFU, and the diffusion of the latter was more hindered. The result of ^(19)F spin diffusion NMR for the corresponding freeze-dried samples indicates that a larger portion of DMFU resided in the R_f core/IPDU intermediate-layer region (where IPDU refers to isophorone diurethane, as a linker to interconnect the R_f group and the PEG chain) than that of FU while the opposite is true in the PEG–water phase. To understand the experimental data, a diffusion model was proposed to include: (1) hindered diffusion of the drug molecules in the R_f core/IPDU-intermediate-layer region; (2) relatively free diffusion of the drug molecules in the PEG-water phase (or region); and (3) diffusive exchange of the probe molecules between the above two regions. This study also shows that molecular diffusion NMR combined with spin diffusion NMR is useful in studying the drug loading and diffusion properties in hydrogels for the purpose of drug delivery applications
Paradoxical euthyroid hormone profile in a case of Graves' disease with cardiac failure
Cardiac failure is an uncommon complication of juvenile hyperthyroidism. We describe an adolescent boy with Graves' disease who developed manifestations of heart failure while on antithyroid medications. There was no evidence of any underlying cardiac disease. He had paradoxical euthyroid hormone profile which rose to hyperthyroid range when the manifestations of the cardiac failure subsided. The case highlights several unusual features of Graves' disease
Studies on the Toxicity and Efficacy of a New Amino Acid Solution in Pediatric Parenteral Nutrition
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/142223/1/jpen0368.pd
A Condensation-Ordering Mechanism in Nanoparticle-Catalyzed Peptide Aggregation
Nanoparticles introduced in living cells are capable of strongly promoting
the aggregation of peptides and proteins. We use here molecular dynamics
simulations to characterise in detail the process by which nanoparticle
surfaces catalyse the self- assembly of peptides into fibrillar structures. The
simulation of a system of hundreds of peptides over the millisecond timescale
enables us to show that the mechanism of aggregation involves a first phase in
which small structurally disordered oligomers assemble onto the nanoparticle
and a second phase in which they evolve into highly ordered beta-sheets as
their size increases
Recommended from our members
Disorder-specific functional abnormalities during sustained attention in youth with Attention Deficit Hyperactivity Disorder (ADHD) and with Autism
Attention Deficit Hyperactivity Disorder (ADHD) and Autism Spectrum Disorder (ASD) are often comorbid and share behavioural-cognitive abnormalities in sustained attention. A key question is whether this shared cognitive phenotype is based on common or different underlying pathophysiologies. To elucidate this question, we compared 20 boys with ADHD to 20 age and IQ matched ASD and 20 healthy boys using functional magnetic resonance imaging (fMRI) during a parametrically modulated vigilance task with a progressively increasing load of sustained attention. ADHD and ASD boys had significantly reduced activation relative to controls in bilateral striato–thalamic regions, left dorsolateral prefrontal cortex (DLPFC) and superior parietal cortex. Both groups also displayed significantly increased precuneus activation relative to controls. Precuneus was negatively correlated with the DLPFC activation, and progressively more deactivated with increasing attention load in controls, but not patients, suggesting problems with deactivation of a task-related default mode network in both disorders. However, left DLPFC underactivation was significantly more pronounced in ADHD relative to ASD boys, which furthermore was associated with sustained performance measures that were only impaired in ADHD patients. ASD boys, on the other hand, had disorder-specific enhanced cerebellar activation relative to both ADHD and control boys, presumably reflecting compensation. The findings show that ADHD and ASD boys have both shared and disorder-specific abnormalities in brain function during sustained attention. Shared deficits were in fronto–striato–parietal activation and default mode suppression. Differences were a more severe DLPFC dysfunction in ADHD and a disorder-specific fronto–striato–cerebellar dysregulation in ASD
In Vitro Study of the Effects of Angiostrongylus cantonensis Larvae Extracts on Apoptosis and Dysfunction in the Blood-Brain Barrier (BBB)
It has been hypothesized that blood-brain barrier (BBB) dysfunction in Angiostrongylus cantonensis infection might be due to the apoptosis of the hosts' BBB cells. Here, we evaluated this hypothesis through several methods, all based on an in vitro mouse BBB model consisting of primary culture brain microvascular endothelial cells (BMECs) and brain astrocytic cells (BACs). In the present study, a four-hour percolation and HRP permeability experiment showed that A. cantonensis larvae extracts can increase the permeability of the BBB. Apoptosis among BMECs and BACs after exposure to larvae extracts was monitored by TUNEL and annexin-V-FITC/PI double staining. A. cantonensis larvae extracts were found to induce apoptosis in both BMECs and BACs. For this reason, we concluded that the induction of apoptosis might participate in the BBB dysfunction observed during angiostrongyliasis. Improved fundamental understanding of how A. cantonensis induces apoptosis may lead to new approaches to the treatment or prevention of this parasitic disease
Recommended from our members
Cosmogenic neutron production at the Sudbury Neutrino Observatory
Neutrons produced in nuclear interactions initiated by cosmic-ray muons present an irreducible background to many rare-event searches, even in detectors located deep underground. Models for the production of these neutrons have been tested against previous experimental data, but the extrapolation to deeper sites is not well understood. Here we report results from an analysis of cosmogenically produced neutrons at the Sudbury Neutrino Observatory. A specific set of observables are presented, which can be used to benchmark the validity of geant4 physics models. In addition, the cosmogenic neutron yield, in units of 10-4 cm2/(g·μ), is measured to be 7.28±0.09(stat)-1.12+1.59(syst) in pure heavy water and 7.30±0.07(stat)-1.02+1.40(syst) in NaCl-loaded heavy water. These results provide unique insights into this potential background source for experiments at SNOLAB
- …