738 research outputs found
NiCd cell reliability in the mission environment
This paper summarizes an effort by Gates Aerospace Batteries (GAB) and the Reliability Analysis Center (RAC) to analyze survivability data for both General Electric and GAB NiCd cells utilized in various spacecraft. For simplicity sake, all mission environments are described as either low Earth orbital (LEO) or geosynchronous Earth orbit (GEO). 'Extreme value statistical methods' are applied to this database because of the longevity of the numerous missions while encountering relatively few failures. Every attempt was made to include all known instances of cell-induced-failures of the battery and to exclude battery-induced-failures of the cell. While this distinction may be somewhat limited due to availability of in-flight data, we have accepted the learned opinion of the specific customer contacts to ensure integrity of the common databases. This paper advances the preliminary analysis reported upon at the 1991 NASA Battery Workshop. That prior analysis was concerned with an estimated 278 million cell-hours of operation encompassing 183 satellites. The paper also cited 'no reported failures to date.' This analysis reports on 428 million cell hours of operation emcompassing 212 satellites. This analysis also reports on seven 'cell-induced-failures.
Analysis of nickel-cadmium battery reliability data containing zero failures
An analysis of reliability data on Nickel-Cadmium (NiCd) batteries (for use in spacecraft) is presented. The data were collected by Gates Aerospace and represent a substantial reliability database. The data were taken from the performance of 183 satellites which were in operation from between .1 and 22 years, for a total of 278 million cell-hours of operation
Profile of a cell test database and a corresponding reliability database
The development of computerized control, and data retrieval for aerospace cell testing affords an excellent opportunity to incorporate three specific concepts to both manage the test area and to track product performance on a real-time basis. The adoption and incorporation of precepts fostered by this total quality management (TQM) initiative are critical to us for retaining control of our business while substantially reducing the separate quality control inspection activity. Test discrepancies are all 'equally bad' in cell acceptance testing because, for example, we presently do not discriminate between 1 or 25 mV for an overvoltage condition. We must take leadership in classifying such discrepancies in order to expedite their clearance and redirect our resources for prevention activities. The development and use of engineering alerts (or guardbanding) which more closely match our product capabilities and are toleranced tighter than the required customer specification are paramount to managing the test unit in order to remain both quality and cost effective
Reliability study of the NiH2 strain gage
This paper summarizes a joint study by Gates Aerospace Batteries (GAB) and the Reliability Analysis Center (RAC). This study characterizes the reliability and robustness of the temperature compensated strain gages currently specified for sensing of internal pressure of NiH2 cells. These strain gages are characterized as fully encapsulated, metallic foil grids with known resistance that varies with deformation. The measurable deformation, when typically installed on the hemispherical portion of a NiH2 cell, is proportional to the material stresses as generated by internal cell pressures. The internal pressure sensed in this manner is calibrated to indicate the state-of-charge for the cell. This study analyzes and assesses both robustness and reliability for the basic design of the strain gage, the installation of the strain gage, and the circuitry involved
Phenyl-Substituted Siloxane Hybrid Gels that Soften Below 140[degrees]C
A characteristic of so-called melting gels is that the gels, which are rigid at room temperature, are able to soften and resoften at temperatures around 110 [degrees]C. However, after consolidation at temperatures higher than 150 [degrees]C, the gels no longer resoften. Two systems of melting gels were investigated: phenyltrimethoxysilane (PhTMS)–diphenyldimethoxysilane (DPhDMS) and phenyltriethoxysilane (PhTES)–diphenyldiethoxysilane (DPhDES). The influence of disubstituted versus monosubstituted alkoxide on the softening behavior and the temperature of decomposition was studied. The consolidation temperature increased as the amount of disubstituted alkoxide increased, while the decomposition temperature increased only slightly. In general, the ethoxy-containing gels (maximum at 150[degrees]C) consolidated at lower temperatures than the methoxy-containing gels (maximum at 180[degrees]C)
Fault tree analysis: NiH2 aerospace cells for LEO mission
The Fault Tree Analysis (FTA) is one of several reliability analyses or assessments applied to battery cells to be utilized in typical Electric Power Subsystems for spacecraft in low Earth orbit missions. FTA is generally the process of reviewing and analytically examining a system or equipment in such a way as to emphasize the lower level fault occurrences which directly or indirectly contribute to the major fault or top level event. This qualitative FTA addresses the potential of occurrence for five specific top level events: hydrogen leakage through either discrete leakage paths or through pressure vessel rupture; and four distinct modes of performance degradation - high charge voltage, suppressed discharge voltage, loss of capacity, and high pressure
Ni-MH storage test and cycle life test
Gates Aerospace Batteries is conducting two long term test programs to fully characterize the NiMH cell technology for aerospace applications. The first program analyzes the effects of long term storage upon cell performance. The second program analyzes cycle life testing and preliminary production lot testing. This paper summarizes these approaches to testing the NiMH couple and culminates with initial storage and testing recommendations. Long term storage presents challenges to deter the adverse condition of capacity fade in NiMH cells. Elevated but stabilized pressures and elevated but stabilized end-of-charge voltages also appear to be a characteristic phenomenon of long term storage modes. However, the performance degradation is dependent upon specific characteristics of the metal-hydride alloy. To date, there is no objective evidence with which to recommend the proper method for storage and handling of NiMH cells upon shipment. This is particularly critical due to limited data points that indicate open circuit storage at room temperature for 60 to 90 days will result in irrecoverable capacity loss. Accordingly a test plan was developed to determine what method of mid-term to long-term storage will prevent irrecoverable capacity loss. The explicit assumption is that trickle charging at some rate above the self-discharge rate will prevent the irreversible chemical changes to the negative electrode that result in the irrecoverable capacity loss. Another premise is that lower storage temperatures, typically 0 C for aerospace customers, will impede any negative chemical reactions. Three different trickle charge rates are expected to yield a fairly flat response with respect to recoverable capacity versus baseline cells in two different modes of open circuit. Specific attributes monitored include: end-of-charge voltage, end-of-charge pressure, mid-point discharge voltage, capacity, and end-of-discharge pressure. Cycle life testing and preliminary production lot testing continue to dominate the overall technology development effort at GAB. The cell life test program reflects continuing improvements in baseline cell designs. Performance improvements include lower and more stable charge voltages and pressures. The continuing review of production lot testing assures conformance to the design criteria and expectations. This is especially critical during this period of transferring technology from research and development status to production
An open source, FPGA-based LeKID readout for BLAST-TNG: Pre-flight results
We present a highly frequency multiplexed readout for large-format superconducting detector arrays intended for use in the next generation of balloon-borne and space-based sub-millimeter and far-infrared missions. We will demonstrate this technology on the upcoming NASA Next Generation Balloon-borne Large Aperture Sub-millimeter Telescope (BLAST-TNG) to measure the polarized emission of Galactic dust at wavelengths of 250, 350 and 500 microns. The BLAST-TNG receiver incorporates the first arrays of Lumped Element Kinetic Inductance Detectors (LeKID) along with the first microwave multiplexing readout electronics to fly in a space-like environment and will significantly advance the TRL for these technologies. After the flight of BLAST-TNG, we will continue to improve the performance of the detectors and readout electronics for the next generation of balloon-borne instruments and for use in a future FIR Surveyor.
Read More: http://www.worldscientific.com/doi/abs/10.1142/S225117171641003
A Phase II Trial of Pyrazine Diazohydroxide in Patients with Disseminated Malignant Melanoma and no Prior Chemotherapy – Southwest Oncology Group Study
Malignant melanoma is rapidly increasing inthe United States. Metastatic diseaseresponds poorly to currently availablechemotherapy. Pyrazine diazohydroxide(PZDH) is a new agent inhibiting DNAsynthesis that is active in mouse tumormodels and human xenografts and lackscross resistance withmultiple standard agents. In this phase IItrial, patients with no prior chemotherapyor immunotherapyfor metastatic disease and performancestatus (SWOG) of 0–1, were treated withpyrazine diazohydroxide at a dose of 100 mg/m 2 /day by IV bolus injectionover 5–15 minutes for 5 consecutive daysevery 6 weeks. There were 23 eligiblepatients entered on this trial with 74%having PS of 0 and 91% having visceralmetastases. There were no confirmed anti-tumor responses. Theoverall response rate is 0% (95% CI 0%–15%). Median overall survival is sixmonths (95% CI 5-8months). The most common toxicities were hematologic and consisted of lymphopenia,thrombocytopenia, anemia, and leukopenia. Fatigue, and nausea and vomiting were thenext mostcommon toxicities. Pyrazine diazohydroxideby this dose and schedule has insufficientactivity in thetreatment of disseminated malignantmelanoma to warrant further investigation.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45216/1/10637_2004_Article_390690.pd
- …