3,237 research outputs found

    Reasoning About Pragmatics with Neural Listeners and Speakers

    Full text link
    We present a model for pragmatically describing scenes, in which contrastive behavior results from a combination of inference-driven pragmatics and learned semantics. Like previous learned approaches to language generation, our model uses a simple feature-driven architecture (here a pair of neural "listener" and "speaker" models) to ground language in the world. Like inference-driven approaches to pragmatics, our model actively reasons about listener behavior when selecting utterances. For training, our approach requires only ordinary captions, annotated _without_ demonstration of the pragmatic behavior the model ultimately exhibits. In human evaluations on a referring expression game, our approach succeeds 81% of the time, compared to a 69% success rate using existing techniques

    Learning with Latent Language

    Full text link
    The named concepts and compositional operators present in natural language provide a rich source of information about the kinds of abstractions humans use to navigate the world. Can this linguistic background knowledge improve the generality and efficiency of learned classifiers and control policies? This paper aims to show that using the space of natural language strings as a parameter space is an effective way to capture natural task structure. In a pretraining phase, we learn a language interpretation model that transforms inputs (e.g. images) into outputs (e.g. labels) given natural language descriptions. To learn a new concept (e.g. a classifier), we search directly in the space of descriptions to minimize the interpreter's loss on training examples. Crucially, our models do not require language data to learn these concepts: language is used only in pretraining to impose structure on subsequent learning. Results on image classification, text editing, and reinforcement learning show that, in all settings, models with a linguistic parameterization outperform those without

    Translating Neuralese

    Full text link
    Several approaches have recently been proposed for learning decentralized deep multiagent policies that coordinate via a differentiable communication channel. While these policies are effective for many tasks, interpretation of their induced communication strategies has remained a challenge. Here we propose to interpret agents' messages by translating them. Unlike in typical machine translation problems, we have no parallel data to learn from. Instead we develop a translation model based on the insight that agent messages and natural language strings mean the same thing if they induce the same belief about the world in a listener. We present theoretical guarantees and empirical evidence that our approach preserves both the semantics and pragmatics of messages by ensuring that players communicating through a translation layer do not suffer a substantial loss in reward relative to players with a common language.Comment: Fixes typos and cleans ups some model presentation detail
    • …
    corecore