14 research outputs found

    Tumor volume regression during preoperative chemoradiotherapy for rectal cancer : a prospective observational study with weekly MRI

    No full text
    PURPOSE: Few data is available on rectal tumor shrinkage during preoperative chemoradiotherapy (CRT). This regression pattern is interesting to optimize timing of dose escalation on the tumor. METHODS: Gross tumor volumes (GTV) were contoured by two observers on magnetic resonance imaging (MRI) obtained before, weekly during, 2-4 weeks after, and 7-8 weeks after a 5-week course of concomitant CRT for rectal cancer. RESULTS: Overall, 120 MRIs were acquired in 15 patients. A statistically significant tumor volume reduction is seen from the first week, and between any two time points (p < .007). At the end of CRT, 46.3% of the initial tumor volume remained, and 32.4% at time of surgery. PTV measured 61.2% at the end of treatment. Tumor shrinkage is the fastest in the beginning of treatment (26%/week), slows down to 7%/week in the last 2 weeks of CRT, and finally to 1.3%/week in the last 5 weeks before surgery. CONCLUSIONS: The main rectal tumor regression occurs during CRT course itself, and mostly in the first half, with shrinking speed decreasing over the course. This suggests that a sequential boost is preferably done after the elective fields, yielding an average PTV-reduction of 39%. A simultaneous integrated boost strategy could benefit from adaptive planning during the course

    Tumor volume regression during preoperative chemoradiotherapy for rectal cancer : a prospective observational study with weekly MRI

    No full text
    PURPOSE: Few data is available on rectal tumor shrinkage during preoperative chemoradiotherapy (CRT). This regression pattern is interesting to optimize timing of dose escalation on the tumor. METHODS: Gross tumor volumes (GTV) were contoured by two observers on magnetic resonance imaging (MRI) obtained before, weekly during, 2-4 weeks after, and 7-8 weeks after a 5-week course of concomitant CRT for rectal cancer. RESULTS: Overall, 120 MRIs were acquired in 15 patients. A statistically significant tumor volume reduction is seen from the first week, and between any two time points (p < .007). At the end of CRT, 46.3% of the initial tumor volume remained, and 32.4% at time of surgery. PTV measured 61.2% at the end of treatment. Tumor shrinkage is the fastest in the beginning of treatment (26%/week), slows down to 7%/week in the last 2 weeks of CRT, and finally to 1.3%/week in the last 5 weeks before surgery. CONCLUSIONS: The main rectal tumor regression occurs during CRT course itself, and mostly in the first half, with shrinking speed decreasing over the course. This suggests that a sequential boost is preferably done after the elective fields, yielding an average PTV-reduction of 39%. A simultaneous integrated boost strategy could benefit from adaptive planning during the course

    Does setup on rectal wall improve rectal cancer boost radiotherapy?

    No full text
    BACKGROUND: Rectal cancer patients that show a pathological complete response (pCR) after neo-adjuvant chemo-radiotherapy, have better prognosis. To increase pCR rates several studies escalate the tumor irradiation dose. However, due to lacking tumor contrast on online imaging techniques, no direct tumor setup can be performed and large boost margins are needed to ensure tumor coverage. The purpose of this study was to evaluate the feasibility of performing a setup on rectal wall for rectal cancer boost radiotherapy, thereby using rectal wall nearby the tumor as tumor position surrogate. METHODS: For sixteen patients, daily MRI's were performed during 1 week of radiotherapy. On each of these images, tumor and rectum were delineated. Residual displacements were determined per surface voxel after setup on bony anatomy or nearby rectal wall and setup errors for both setups were compared. Furthermore for every rectal wall voxel nearby the tumor, displacement was compared with the closest tumor point and correlation was determined. RESULTS: Mean (SD) setup error was 2.7 mm (3.3 mm) and 2.2 mm (3.2 mm) after setup on bony anatomy and rectal wall respectively. Nevertheless, similar PTV-margin estimates i.e. 95th percentile distances, were found; 8.0 mm. Also, a merely moderate correlation; ρ = 0.66 was found between rectal wall and tumor displacement. Further investigation into tumor and rectal mobility differences showed that the rectal wall lacks appropriate anatomical landmarks to find true displacements, especially to capture motion along the rectal wall. CONCLUSIONS: Setup on rectal wall slightly reduces mean setup errors but requires a similar PTV-margin as compared to setup on bony anatomy. Rectal mobility might be similar to tumor mobility, but due the absence of anatomical landmarks in the rectum, displacements along the rectal wall are not detected on current online imaging. Therefore, to further reduce tumor position uncertainties, direct or indirect online tumor visualization is needed

    Evolution of motion uncertainty in rectal cancer : implications for adaptive radiotherapy

    No full text
    Reduction of motion uncertainty by applying adaptive radiotherapy strategies depends largely on the temporal behavior of this motion. To fully optimize adaptive strategies, insight into target motion is needed. The purpose of this study was to analyze stability and evolution in time of motion uncertainty of both the gross tumor volume (GTV) and clinical target volume (CTV) for patients with rectal cancer. We scanned 16 patients daily during one week, on a 1.5 T MRI scanner in treatment position, prior to each radiotherapy fraction. Single slice sagittal cine MRIs were made at the beginning, middle, and end of each scan session, for one minute at 2 Hz temporal resolution. GTV and CTV motion were determined by registering a delineated reference frame to time-points later in time. The 95th percentile of observed motion (dist95%) was taken as a measure of motion. The stability of motion in time was evaluated within each cine-MRI separately. The evolution of motion was investigated between the reference frame and the cine-MRIs of a single scan session and between the reference frame and the cine-MRIs of several days later in the course of treatment. This observed motion was then converted into a PTV-margin estimate. Within a one minute cine-MRI scan, motion was found to be stable and small. Independent of the time-point within the scan session, the average dist95% remains below 3.6 mm and 2.3 mm for CTV and GTV, respectively 90% of the time. We found similar motion over time intervals from 18 min to 4 days. When reducing the time interval from 18 min to 1 min, a large reduction in motion uncertainty is observed. A reduction in motion uncertainty, and thus the PTV-margin estimate, of 71% and 75% for CTV and tumor was observed, respectively. Time intervals of 15 and 30 s yield no further reduction in motion uncertainty compared to a 1 min time interval

    Inter-observer agreement of MRI-based tumor delineation for preoperative radiotherapy boost in locally advanced rectal cancer

    No full text
    Background While surgery remains the cornerstone of rectal cancer treatment, organ-preservation is upcoming. Therefore, neo-adjuvant treatment should be optimized. By escalating doses, response can be increased. To limit toxicity of boost, accurate gross tumor volume (GTV) definition is required. MRI, especially undeformed fast spin echo diffusion-weighted MRI (DWI), looks promising for delineation. However, inconsistencies between observers should be quantified before clinical implementation. We aim to find which MRI sequence (T2w, DWI or combination) is optimal and clinically useful for GTV definition by evaluating inter-observer agreement. Methods Locally advanced rectal cancer patients (tumors 2). Three independent observers delineated T2w, DWI and combination (Combi) after training-set. Volumes, conformity index (CI), and maximum Hausdorff distance (HD) were calculated between any observer-pair per patient per modality. Results Twenty-four consecutive patients were included. One patient had cT2 (4.2%), 19 cT3 (79.1%) and 4 cT4 (16.7%), with 2 clinical node negative (8.3%), 4 cN1 (16.7%), and 18 cN2 (75.0%) on MRI. From 24 patients, 70 sequences were available (24x T2, 23x DWI, and 23x Combi). Between observers, no significant volume differences were observed per modality. T2 showed significantly largest volumes compared to DWI (mean difference 19.85 ml, SD 17.42, p 0.61). Average HD was largest on T2 (18.60 mm, max 31.40 mm, min 9.20 mm). Discussion Delineation on DWI resulted in delineation of the smallest volumes with similar consistency and mean distances, but with slightly lower Hausdorff distances compared to T2 and Combi. However, with lack of a gold standard it remains difficult to establish if delineations also represent true tumor. Study strengths were DWI adaptation to exclude geometrical distortions and training-set. DWI shows great potential for delineation purposes as long as sufficient experience exists and geometrical distortions are eliminated

    Inter-observer agreement of MRI-based tumor delineation for preoperative radiotherapy boost in locally advanced rectal cancer

    No full text
    Background While surgery remains the cornerstone of rectal cancer treatment, organ-preservation is upcoming. Therefore, neo-adjuvant treatment should be optimized. By escalating doses, response can be increased. To limit toxicity of boost, accurate gross tumor volume (GTV) definition is required. MRI, especially undeformed fast spin echo diffusion-weighted MRI (DWI), looks promising for delineation. However, inconsistencies between observers should be quantified before clinical implementation. We aim to find which MRI sequence (T2w, DWI or combination) is optimal and clinically useful for GTV definition by evaluating inter-observer agreement. Methods Locally advanced rectal cancer patients (tumors 2). Three independent observers delineated T2w, DWI and combination (Combi) after training-set. Volumes, conformity index (CI), and maximum Hausdorff distance (HD) were calculated between any observer-pair per patient per modality. Results Twenty-four consecutive patients were included. One patient had cT2 (4.2%), 19 cT3 (79.1%) and 4 cT4 (16.7%), with 2 clinical node negative (8.3%), 4 cN1 (16.7%), and 18 cN2 (75.0%) on MRI. From 24 patients, 70 sequences were available (24x T2, 23x DWI, and 23x Combi). Between observers, no significant volume differences were observed per modality. T2 showed significantly largest volumes compared to DWI (mean difference 19.85 ml, SD 17.42, p 0.61). Average HD was largest on T2 (18.60 mm, max 31.40 mm, min 9.20 mm). Discussion Delineation on DWI resulted in delineation of the smallest volumes with similar consistency and mean distances, but with slightly lower Hausdorff distances compared to T2 and Combi. However, with lack of a gold standard it remains difficult to establish if delineations also represent true tumor. Study strengths were DWI adaptation to exclude geometrical distortions and training-set. DWI shows great potential for delineation purposes as long as sufficient experience exists and geometrical distortions are eliminated

    MRI-based tumor inter-fraction motion statistics for rectal cancer boost radiotherapy

    No full text
    Background: In patients diagnosed with rectal cancer, dose escalation is currently being investigated in a large number of studies. Since there is little known on gross tumor volume (GTV) inter-fraction motion for rectal cancer, a wide variety in margins is used. Purpose of this study is to quantify GTV inter-fraction motion statistics on different timescales and to give estimates of planning target volume (PTV) margins. Material and methods: Thirty-two patients, diagnosed with rectal cancer, were included. To investigate motion from week-to-week, 16 patients underwent a pretreatment and five weekly MRIs, prior to a radiotherapy (RT) fraction of the chemoradiotherapy treatment. To investigate motion from day-to-day, the remaining 16 patients underwent five daily MRIs before each fraction in one week of RT. GTV was delineated on all scans according to guidelines. Scans were aligned on bony anatomy with the first MRI. For both datasets separately, GTV inter-fraction motion was determined based on center-of-gravity displacement. Therefrom, systematic and random errors were determined in left/right (LR), anterior/posterior and cranial/caudal (CC) direction. PTV margin estimates were calculated and evaluated on GTV coverage. Results: Systematic and random errors were found in the range of 2.3–4.8 mm and 1.5–3.3 mm from week-to-week, and 1.8–4.5 mm and 1.8–4.0 mm from day-to-day, respectively. On both timescales, similar motion patterns were found; the most motion was observed in CC whilst the least motion was observed in LR. On the week-to-week data more systematic and less random motion was observed compared to the day-to-day data. Overall, only slight differences in margin estimates were found. Derived PTV margin estimates were found to give adequate GTV coverage. Conclusion: GTV inter-fraction motion, on a week-to-week and day-to-day timescale, can be accounted for using motion statistics presented in this study

    MRI-based tumor inter-fraction motion statistics for rectal cancer boost radiotherapy

    No full text
    Background: In patients diagnosed with rectal cancer, dose escalation is currently being investigated in a large number of studies. Since there is little known on gross tumor volume (GTV) inter-fraction motion for rectal cancer, a wide variety in margins is used. Purpose of this study is to quantify GTV inter-fraction motion statistics on different timescales and to give estimates of planning target volume (PTV) margins. Material and methods: Thirty-two patients, diagnosed with rectal cancer, were included. To investigate motion from week-to-week, 16 patients underwent a pretreatment and five weekly MRIs, prior to a radiotherapy (RT) fraction of the chemoradiotherapy treatment. To investigate motion from day-to-day, the remaining 16 patients underwent five daily MRIs before each fraction in one week of RT. GTV was delineated on all scans according to guidelines. Scans were aligned on bony anatomy with the first MRI. For both datasets separately, GTV inter-fraction motion was determined based on center-of-gravity displacement. Therefrom, systematic and random errors were determined in left/right (LR), anterior/posterior and cranial/caudal (CC) direction. PTV margin estimates were calculated and evaluated on GTV coverage. Results: Systematic and random errors were found in the range of 2.3–4.8 mm and 1.5–3.3 mm from week-to-week, and 1.8–4.5 mm and 1.8–4.0 mm from day-to-day, respectively. On both timescales, similar motion patterns were found; the most motion was observed in CC whilst the least motion was observed in LR. On the week-to-week data more systematic and less random motion was observed compared to the day-to-day data. Overall, only slight differences in margin estimates were found. Derived PTV margin estimates were found to give adequate GTV coverage. Conclusion: GTV inter-fraction motion, on a week-to-week and day-to-day timescale, can be accounted for using motion statistics presented in this study
    corecore