22 research outputs found

    Reorganization of multivesicular bodies regulates MHC class II antigen presentation by dendritic cells

    Get PDF
    Immature dendritic cells (DCs) sample their environment for antigens and after stimulation present peptide associated with major histocompatibility complex class II (MHC II) to naive T cells. We have studied the intracellular trafficking of MHC II in cultured DCs. In immature cells, the majority of MHC II was stored intracellularly at the internal vesicles of multivesicular bodies (MVBs). In contrast, DM, an accessory molecule required for peptide loading, was located predominantly at the limiting membrane of MVBs. After stimulation, the internal vesicles carrying MHC II were transferred to the limiting membrane of the MVB, bringing MHC II and DM to the same membrane domain. Concomitantly, the MVBs transformed into long tubular organelles that extended into the periphery of the cells. Vesicles that were formed at the tips of these tubules nonselectively incorporated MHC II and DM and presumably mediated transport to the plasma membrane. We propose that in maturing DCs, the reorganization of MVBs is fundamental for the timing of MHC II antigen loading and transport to the plasma membrane

    Association of tapasin and COPI provides a mechanism for the retrograde transport of major histocompatibility complex (MHC) class I molecules from the Golgi complex to the endoplasmic reticulum

    No full text
    Tapasin is a subunit of the transporter associated with antigen processing (TAP). It associates with the major histocompatibility complex (MHC) class I. We show that tapasin interacts with beta- and gamma-subunits of COPI coatomer. COPI retrieves membrane proteins from the Golgi network back to the endoplasmic reticulum (ER). The COPI subunit-associated tapasin also interacts with MHC class I molecules suggesting that tapasin acts as the cargo receptor for packing MHC class I molecules as cargo proteins into COPI-coated vesicles. In tapasin mutant cells, neither TAP nor MHC class I are detected in association with the COPI coatomer. Interestingly, tapasin-associated MHC class I molecules are antigenic peptide-receptive and detected in both the ER and the Golgi. Our data suggest that tapasin is required for the COPI vesicle-mediated retrograde transport of immature MHC class I molecules from the Golgi network to the ER

    Involvement of the Endoplasmic Reticulum in Peroxisome Formation

    No full text
    The traditional view holds that peroxisomes are autonomous organelles multiplying by growth and division. More recently, new observations have challenged this concept. Herein, we present evidence supporting the involvement of the endoplasmic reticulum (ER) in peroxisome formation by electron microscopy, immunocytochemistry and three-dimensional image reconstruction of peroxisomes and associated compartments in mouse dendritic cells. We found the peroxisomal membrane protein Pex13p and the ATP-binding cassette transporter protein PMP70 present in specialized subdomains of the ER that were continuous with a peroxisomal reticulum from which mature peroxisomes arose. The matrix proteins catalase and thiolase were only detectable in the reticula and peroxisomes. Our results suggest the existence of a maturation pathway from the ER to peroxisomes and implicate the ER as a major source from which the peroxisomal membrane is derived

    Involvement of the endoplasmic reticulum in peroxisome formation

    No full text
    The traditional view holds that peroxisomes are autonomous organelles multiplying by growth and division. More recently, new observations have challenged this concept. Herein, we present evidence supporting the involvement of the endoplasmic reticulum (ER) in peroxisome formation by electron microscopy, immunocytochemistry and three-dimensional image reconstruction of peroxisomes and associated compartments in mouse dendritic cells. We found the peroxisomal membrane protein Pex13p and the ATP-binding cassette transporter protein PMP70 present in specialized subdomains of the ER that were continuous with a peroxisomal reticulum from which mature peroxisomes arose. The matrix proteins catalase and thiolase were only detectable in the reticula and peroxisomes. Our results suggest the existence of a maturation pathway from the ER to peroxisomes and implicate the ER as a major source from which the peroxisomal membrane is derive

    Langerin, a Novel C-Type Lectin Specific to Langerhans Cells, Is an Endocytic Receptor that Induces the Formation of Birbeck Granules

    Get PDF
    AbstractWe have identified a type II Ca2+-dependent lectin displaying mannose-binding specificity, exclusively expressed by Langerhans cells (LC), and named Langerin. LC are uniquely characterized by Birbeck granules (BG), which are organelles consisting of superimposed and zippered membranes. Here, we have shown that Langerin is constitutively associated with BG and that antibody to Langerin is internalized into these structures. Remarkably, transfection of Langerin cDNA into fibroblasts created a compact network of membrane structures with typical features of BG. Langerin is thus a potent inducer of membrane superimposition and zippering leading to BG formation. Our data suggest that induction of BG is a consequence of the antigen-capture function of Langerin, allowing routing into these organelles and providing access to a nonclassical antigen-processing pathway
    corecore