19 research outputs found

    Investigating neuroinflammatory disease through retinal imaging and biomarkers

    Get PDF
    Neuroinflammatory diseases, in particular multiple sclerosis (MS) and neuromyelitis optica spectrum disorder, often affect the anterior visual pathways. This can occur through direct inflammatory insult in the form of optic neuritis or through retrograde degeneration, but progressive neurodegenerative processes related to axonal loss and atrophy also play a role. Energy failure has been postulated as an important factor mediating factor in these neurodegenerative processes, but its exact role is poorly understood. The advent of optical coherence tomography (OCT) enables high resolution imaging of the retina with relative ease. In neurology research, OCT has mostly been used to quantify retinal layer thicknesses. This thesis focuses on the largely unexplored potential of OCT as a functional biomarker. The primary aim is to develop indirect non-invasive in-vivo biomarkers informing on metabolic function, taking into account the high energy demand of the retina, particularly during dark-adaptation. First, two novel functional OCT measures are presented; the dynamic dark-adaptation related thickening of the outer retinal layers and the relative reflectivity of the ellipsoid zone (EZ), which comprises the majority of retinal mitochondria. Both measures appeared to be reduced in acute optic neuritis, and also in chronic neuroinflammatory disease in the case of EZ reflectivity. Furthermore, pilot OCT-angiography (OCTA) data indicated that vascular density was reduced in acute optic neuritis. As reduced EZ reflectivity and lower vascular density were present to a similar degree in both eyes of acute optic neuritis patients suggest that a background level of mitochondrial dysfunction and hypoperfusion may occur in neuroinflammatory disease, independent from acute inflammatory activity. The work presented in this thesis illustrates that OCT has the potential to provide valuable information on retinal function in neuroinflammatory disease. In the future, artificial intelligence and big data analysis may enable the development of a holistic analysis method for raw OCT data, providing a summary report on both qualitative, such as presence of microcystic macular oedema (MMO), and quantitative scan features, such as layer thickness, vascular density and reflectivity. Comprehensive analysis of both functional and structural OCT data may facilitate diagnosis, inform on prognosis and provide important insight into the role of metabolic failure in the pathophysiology of neuroinflammatory disease

    Optical Coherence Tomography Angiography (OCTA) in Multiple Sclerosis and Neuromyelitis Optica Spectrum Disorder

    Get PDF
    Vascular changes are increasingly recognized as important factors in the pathophysiology of neuroinflammatory disease, especially in multiple sclerosis (MS). The relatively novel technology of optical coherence tomography angiography (OCTA) images the retinal and choroidal vasculature non-invasively and in a depth-resolved manner. OCTA provides an alternative quantitative measure of retinal damage, by measuring vascular density instead of structural atrophy. Preliminary results suggest OCTA is sensitive to retinal damage in early disease stages, while also having less of a "floor-effect" compared with commonly used OCT metrics, meaning it can pick up further damage in a severely atrophied retina in later stages of disease. Furthermore, it may serve as a surrogate marker for vascular pathology in the central nervous system. Data to date consistently reveal lower densities of the retinal microvasculature in both MS and neuromyelitis optica spectrum disorder (NMOSD) compared with healthy controls, even in the absence of prior optic neuritis. Exploring the timing of vascular changes relative to structural atrophy may help answer important questions about the role of hypoperfusion in the pathophysiology of neuroinflammatory disease. Finally, qualitative characteristics of retinal microvasculature may help discriminate between different neuroinflammatory disorders. There are however still issues regarding image quality and development of standardized analysis methods before OCTA can be fully incorporated into clinical practice

    CSF levels of glutamine synthetase and GFAP to explore astrocytic damage in seronegative NMOSD

    Get PDF
    OBJECTIVE: To explore levels of astrocytopathy in neuromyelitis optica spectrum disorder (NMOSD) by measuring levels of the astrocytic enzyme glutamine synthetase (GS) and glial fibrillary acidic protein (GFAP), an established astrocytic biomarker known to be associated with disease activity in multiple sclerosis. METHODS: Cerebrospinal fluid concentrations of GS and GFAP were measured by ELISA in patients with NMOSD (n=39, 28 aquaporin-4 (AQP4)-Ab-seropositive, 3 double-Ab-seronegative, 4 myelin oligodendrocyte glycoprotein (MOG)-Ab-seropositive and 4 AQP4-Ab-seronegative with unknown MOG-Ab-serostatus), multiple sclerosis (MS) (n=69), optic neuritis (n=5) and non-neurological controls (n=37). RESULTS: GFAP and GS concentrations differed significantly across groups (both p<0.001), showing a similar pattern of elevation in patients with AQP4-Ab-seropositive NMOSD. GS and GFAP were significantly correlated, particularly in patients with AQP4-Ab-seropositive NMOSD (rs=0.70, p<0.001). Interestingly, GFAP levels in some patients with double-Ab-seronegative NMOSD were markedly increased. CONCLUSIONS: Our data indicate astrocytic injury occurs in some patients with double-Ab-seronegative NMOSD, which hints at the possible existence of yet undiscovered astrocytic autoimmune targets. We hypothesise that elevated GS and GFAP levels could identify those double-Ab-seronegative patients suitable to undergo in-depth autoimmune screening for astrocytic antibodies
    corecore