72 research outputs found

    The role of a water bug,Sigara striata, in freshwater food webs

    Full text link

    The effect of habitat structure on prey mortality depends on predator and prey microhabitat use

    Get PDF
    Structurally complex habitats provide cover and may hinder the movement of animals. In predator-prey relationships, habitat structure can decrease predation risk when it provides refuges for prey or hinders foraging activity of predators. However, it may also provide shelter, supporting structures and perches for sit-and-wait predators and hence increase their predation rates. We tested the effect of habitat structure on prey mortality in aquatic invertebrates in short-term laboratory predation trials that differed in the presence or absence of artificial vegetation. The effect of habitat structure on prey mortality was context dependent as it changed with predator and prey microhabitat use. Specifically, we observed an ‘anti-refuge' effect of added vegetation: phytophilous predators that perched on the plants imposed higher predation pressure on planktonic prey, while mortality of benthic prey decreased. Predation by benthic and planktonic predators on either type of prey remained unaffected by the presence of vegetation. Our results show that the effects of habitat structure on predator-prey interactions are more complex than simply providing prey refuges or cover for predators. Such context-specific effects of habitat complexity may alter the coupling of different parts of the ecosystem, such as pelagic and benthic habitats, and ultimately affect food web stability through cascading effects on individual life histories and trophic link strengths

    Bubble Captcha - A Start of the New Direction of Text Captcha Scheme Development

    Get PDF
    CAPTCHA, A Completely Automated Public Turing test to tell Computers and Humans Apart, iswell-known system widely used in all sorts of internet services around the world designated to secure the webfrom an automatic malicious activity. For almost two decades almost every system utilize a simple approach tothis problem containing a transcription of distorted letters from image to a text eld. The ground idea is to useimperfection of Optical Character Recognition algorithms against the computers. The development of OpticalCharacter recognition algorithms leads only to state, where the CAPTCHA schemes become more complex andhuman users have a great di culty with the transcription.This paper aims to present a new way of development of CAPTCHA schemes based more a human perception.The goal of this work is to implement new Captcha scheme and assess human capability to read unusual fontsnewer seen before

    Vertical stratification of plant–pollinator interactions in a temperate grassland

    Get PDF
    Visitation of plants by different pollinators depends on individual plant traits, spatial context, and other factors. A neglected aspect of small-scale variation of plant–pollinator interactions is the role of vertical position of flowers. We conducted a series of experiments to study vertical stratification of plant–pollinator interactions in a dry grassland. We observed flower visitors on cut inflorescences of Centaurea scabiosa and Inula salicina placed at different heights above ground in two types of surrounding vegetation: short and tall. Even at such a small-scale, we detected significant shift in total visitation rate of inflorescences in response to their vertical position. In short vegetation, inflorescences close to the ground were visited more frequently, while in tall vegetation, inflorescences placed higher received more visits. Moreover, we found major differences in the composition of the pollinator community on flowers at different heights. In a second experiment, we measured flower visitation rate in inflorescences of Salvia verticillata of variable height. Total flower visitation rate increased markedly with inflorescence height in this case. Data on seed set of individual plants provide evidence for a corresponding positive pollinator-mediated selection on increased inflorescence height. Overall, our results demonstrate strong vertical stratification of plant–pollinator interactions at the scale of mere decimetres. This may have important ecological as well as evolutionary implications

    Flower visitation by hoverflies (Diptera: Syrphidae) in a temperate plant-pollinator network

    Get PDF
    Hoverflies (Diptera: Syrphidae) are among the most important pollinators, although they attract less attention than bees. They are usually thought to be rather opportunistic flower visitors, although previous studied demonstrated that they show colour preferences and their nectar feeding is affected by morphological constraints related to flower morphology. Despite the growing appreciation of hoverflies and other non-bee insects as pollinators, there is a lack of community-wide studies of flower visitation by syrphids. The aim of this paper is to provide a detailed analysis of flower visitation patterns in a species rich community of syrphids in a Central European grassland and to evaluate how species traits shape the structure of the plant-hoverfly flower visitation network. We found that different species varied in the level of specialisation, and while some species visited a similar spectre of flowers, others partitioned resources more strongly. There was a consistent difference in both specialisation and flower preferences between three syrphid subfamilies. Eristalinae and Pipizinae were more specialised than Syrphinae. Trait-based analyses showed that relative flower visitation (i) increased with plant height, but most strongly in Eristalinae; (ii) increased with inflorescence size in small species from all three subfamilies, but was independent of inflorescence size in large species of Eristalinae and Syrphinae; and (iii) depended on flower colour, but in a subfamily-specific way. Eristalinae showed the strongest flower colour preferences for white flowers, Pipizinae visited mostly white and yellow flowers, while Syrphinae were less affected by flower colour. Exploration of the structure of the plant-hoverfly flower visitation network showed that the network was both modular and nested. We also found that there were almost no differences in specialisation and relative visitation frequency between males and females. Overall, we showed that flower visitation in syrphids was affected by phylogenetic relatedness, body size of syrphids and several plant traits

    Experimental loss of generalist plants reveals alterations in plant-pollinator interactions and a constrained flexibility of foraging

    Get PDF
    Species extinctions undermine ecosystem functioning, with the loss of a small subset of functionally important species having a disproportionate impact. However, little is known about the effects of species loss on plant-pollinator interactions. We addressed this issue in a field experiment by removing the plant species with the highest visitation frequency, then measuring the impact of plant removal on flower visitation, pollinator effectiveness and insect foraging in several sites. Our results show that total visitation decreased exponentially after removing 1–4 most visited plants, suggesting that these plants could benefit co-occurring ones by maintaining high flower visitor abundances. Although we found large variation among plant species, the redistribution of the pollinator guild affected mostly the other plants with high visitor richness. Also, the plant traits mediated the effect of removal on flower visitation; while visitation of plants which had smaller inflorescences and more sugar per flower increased after removal, flower visitors did not switch between flower shapes and visitation decreased mostly in plants visited by many morpho-species of flower visitors. Together, these results suggest that the potential adaptive foraging was constrained by flower traits. Moreover, pollinator effectiveness fluctuated but was not directly linked to changes of flower visitation. In conclusion, it seems that the loss of generalist plants alters plant-pollinator interactions by decreasing pollinator abundance with implications for pollination and insect foraging. Therefore, generalist plants have high conservation value because they sustain the complex pattern of plant-pollinator interactions

    Who Eats Whom in a Pool? A Comparative Study of Prey Selectivity by Predatory Aquatic Insects

    Get PDF
    Predatory aquatic insects are a diverse group comprising top predators in small fishless water bodies. Knowledge of their diet composition is fragmentary, which hinders the understanding of mechanisms maintaining their high local diversity and of their impacts on local food web structure and dynamics. We conducted multiple-choice predation experiments using nine common species of predatory aquatic insects, including adult and larval Coleoptera, adult Heteroptera and larval Odonata, and complemented them with literature survey of similar experiments. All predators in our experiments fed selectively on the seven prey species offered, and vulnerability to predation varied strongly between the prey. The predators most often preferred dipteran larvae; previous studies further reported preferences for cladocerans. Diet overlaps between all predator pairs and predator overlaps between all prey pairs were non-zero. Modularity analysis separated all primarily nectonic predator and prey species from two groups of large and small benthic predators and their prey. These results, together with limited evidence from the literature, suggest a highly interconnected food web with several modules, in which similarly sized predators from the same microhabitat are likely to compete strongly for resources in the field (observed Pianka’s diet overlap indices >0.85). Our experiments further imply that ontogenetic diet shifts are common in predatory aquatic insects, although we observed higher diet overlaps than previously reported. Hence, individuals may or may not shift between food web modules during ontogeny

    Modelling size structured food webs using a modified niche model with two predator traits.

    No full text
    The structure of food webs is frequently described using phenomenological stochastic models. A prominent example, the niche model, was found to produce artificial food webs resembling real food webs according to a range of summary statistics. However, the size structure of food webs generated by the niche model and real food webs has not yet been rigorously compared. To fill this void, I use a body mass based version of the niche model and compare prey-predator body mass allometry and predator-prey body mass ratios predicted by the model to empirical data. The results show that the model predicts weaker size structure than observed in many real food webs. I introduce a modified version of the niche model which allows to control the strength of size-dependence of predator-prey links. In this model, optimal prey body mass depends allometrically on predator body mass and on a second trait, such as foraging mode. These empirically motivated extensions of the model allow to represent size structure of real food webs realistically and can be used to generate artificial food webs varying in several aspects of size structure in a controlled way. Hence, by explicitly including the role of species traits, this model provides new opportunities for simulating the consequences of size structure for food web dynamics and stability
    corecore