29 research outputs found

    Optical Bumps in Cosmological GRBs as Supernovae

    Full text link
    From both photometric and broadband spectral monitoring of gamma-ray burst (GRB) lightcurve ``bumps,'' particularly in GRB 011121, a strong case grew for a supernova (SN) origin. The GRB-SN connection was finally solidified beyond a reasonable doubt with the discovery that the bump in GRB 030329 was spectroscopically similar to a bright Type Ic SN. In light of this result, I redress the previous SN bump claims and conclude that 1) the distribution of GRB-SN bump peak magnitudes is consistent with the local Type Ibc SNe peak distribution and suggest that 2) the late-time bumps in all long-duration GRBs are likely supernovae.Comment: 5 pages, 2 figures. To be published in Proc. IAU Colloquium #192 ``Supernovae (10 years of SN1993J),'' held 22-26 April 2003, Valencia, Spain. Editors: J.M. Marcaide and K.W. Weiler. Uses svmult.cl

    United classification of cosmic gamma-ray bursts and their counterparts

    Full text link
    United classification of gamma-ray bursts and their counterparts is established on the basis of measured characteristics: photon energy E and emission duration T. The founded interrelation between the mentioned characteristics of events consists in that, as the energy increases, the duration decreases (and vice versa). The given interrelation reflects the nature of the phenomenon and forms the E-T diagram, which represents a natural classification of all observed events in the energy range from 10E9 to 10E-6 eV and in the corresponding interval of durations from about 10E-2 up to 10E8 s. The proposed classification results in the consequences, which are principal for the theory and practical study of the phenomenon.Comment: Keywords Gamma rays: burst

    Magnetoluminescence

    Full text link
    Pulsar Wind Nebulae, Blazars, Gamma Ray Bursts and Magnetars all contain regions where the electromagnetic energy density greatly exceeds the plasma energy density. These sources exhibit dramatic flaring activity where the electromagnetic energy distributed over large volumes, appears to be converted efficiently into high energy particles and gamma-rays. We call this general process magnetoluminescence. Global requirements on the underlying, extreme particle acceleration processes are described and the likely importance of relativistic beaming in enhancing the observed radiation from a flare is emphasized. Recent research on fluid descriptions of unstable electromagnetic configurations are summarized and progress on the associated kinetic simulations that are needed to account for the acceleration and radiation is discussed. Future observational, simulation and experimental opportunities are briefly summarized.Comment: To appear in "Jets and Winds in Pulsar Wind Nebulae, Gamma-ray Bursts and Blazars: Physics of Extreme Energy Release" of the Space Science Reviews serie
    corecore