3 research outputs found

    Análise da zona afetada pelo calor em soldagem dupla camada utilizando o método dos elementos finitos

    Get PDF
    A técnica de soldagem dupla camada utiliza método controlado de deposição, onde a relação entre os aportes térmicos da segunda para a primeira camada de solda (E2/E1) deve ser criteriosamente definida para promover o refino dos grãos da Zona Afetada pelo Calor (ZAC). Entretanto, a parametrização de processos de soldagem para a realização desta técnica tem sido de modo experimental, requerendo diversos ensaios, corpos de prova e consumíveis, demandando tempo e elevado custo. Uma possível solução para tal problemática é a análise computacional aplicada à soldagem, tornando o estudo desta de grande relevância. Este trabalho objetiva o estudo inicial do comportamento da ZAC em soldagem dupla camada utilizando o Método de Elementos Finitos (MEF). Experimentos práticos foram realizados para comparar e validar o modelo numérico. Dessa maneira, seis corpos de prova foram fabricados, três com camada simples e três com dupla camada. Foram utilizadas três energias de soldagem diferentes para os primeiros passes (0.571, 0.428 e 0.342 kJ/mm) e o dobro de tais energias para o segundo passe (taxa de energia de 1:2). Comparou-se as macrografias dos resultados experimentais e numéricos, tanto para a camada simples quanto para a dupla camada, bem como realizou-se a medição das dimensões da ZAC ao longo da seção transversal dos corpos de prova. Dessa maneira, notou-se que a taxa de energia de 1:2 é suficiente para atingir a zona de grãos grosseiros da primeira camada. Ainda, os resultados macrográficos e as medições das ZAC apresentaram ótima convergência entre as análises experimental e numérica, validando o modelo proposto. Palavras-chave: Distribuição de calor em soldagem. Simulação em soldagem. Sobreposição dos ciclos térmicos

    Cavitation Inception on Hydrokinetic Turbine Blades Shrouded by Diffuser

    No full text
    Diffuser technology placed around hydrokinetic rotors may improve the conversion of the fluid’s kinetic energy into shaft power. However, rotor blades are susceptible to the phenomenon of cavitation, which can impact the overall power efficiency. This paper presents the development of a new optimization model applied to hydrokinetic blades shrouded by a diffuser. The proposed geometry optimization takes into account the effect of cavitation inception. The main contribution of this work to the state of the art is the development of an optimization procedure that takes into account the effects of diffuser efficiency, ηd, and thrust, CTd. The authors are unaware of any other work available in the literature considering the effect of ηd and CTd on the cavitation of shrouded hydrokinetic blades. The model uses the Blade Element Momentum Theory to seek optimized blade geometry in order to minimize or even avoid the occurrence of cavitation. The minimum pressure coefficient is used as a criterion to avoid cavitation inception. Additionally, a Computational Fluid Dynamics investigation was carried out to validate the model based on the Reynolds-Averaged Navier–Stokes formulation, using the κ−ω Shear-Stress Transport turbulence and Rayleigh–Plesset models, to estimate cavitation by means of water vapor production. The methodology was applied to the design of a 10 m diameter hydrokinetic rotor, rated at 250 kW of output power at a flow velocity of 2.5 m/s. An analysis of the proposed model with and without a diffuser was carried out to evaluate the changes in the optimized geometry in terms of chord and twist angle distribution. It was found that the flow around a diffuser-augmented hydrokinetic blade doubles the cavitation inception relative to the unshrouded case. Additionally, the proposed optimization model can completely remove the cavitation occurrence, making it a good alternative for the design of diffuser-augmented hydrokinetic blades free of cavitation
    corecore