12 research outputs found
Analysis of Petri Net Models through Stochastic Differential Equations
It is well known, mainly because of the work of Kurtz, that density dependent
Markov chains can be approximated by sets of ordinary differential equations
(ODEs) when their indexing parameter grows very large. This approximation
cannot capture the stochastic nature of the process and, consequently, it can
provide an erroneous view of the behavior of the Markov chain if the indexing
parameter is not sufficiently high. Important phenomena that cannot be revealed
include non-negligible variance and bi-modal population distributions. A
less-known approximation proposed by Kurtz applies stochastic differential
equations (SDEs) and provides information about the stochastic nature of the
process. In this paper we apply and extend this diffusion approximation to
study stochastic Petri nets. We identify a class of nets whose underlying
stochastic process is a density dependent Markov chain whose indexing parameter
is a multiplicative constant which identifies the population level expressed by
the initial marking and we provide means to automatically construct the
associated set of SDEs. Since the diffusion approximation of Kurtz considers
the process only up to the time when it first exits an open interval, we extend
the approximation by a machinery that mimics the behavior of the Markov chain
at the boundary and allows thus to apply the approach to a wider set of
problems. The resulting process is of the jump-diffusion type. We illustrate by
examples that the jump-diffusion approximation which extends to bounded domains
can be much more informative than that based on ODEs as it can provide accurate
quantity distributions even when they are multi-modal and even for relatively
small population levels. Moreover, we show that the method is faster than
simulating the original Markov chain
Heat release by controlled continuous-time Markov jump processes
We derive the equations governing the protocols minimizing the heat released
by a continuous-time Markov jump process on a one-dimensional countable state
space during a transition between assigned initial and final probability
distributions in a finite time horizon. In particular, we identify the
hypotheses on the transition rates under which the optimal control strategy and
the probability distribution of the Markov jump problem obey a system of
differential equations of Hamilton-Bellman-Jacobi-type. As the state-space mesh
tends to zero, these equations converge to those satisfied by the diffusion
process minimizing the heat released in the Langevin formulation of the same
problem. We also show that in full analogy with the continuum case, heat
minimization is equivalent to entropy production minimization. Thus, our
results may be interpreted as a refined version of the second law of
thermodynamics.Comment: final version, section 2.1 revised, 26 pages, 3 figure
Large Deviations Analysis of Extinction in Branching Models
Cramer's classical theorem is applied to obtain large deviations in branching processes. This is a new avenue for analysis of models in discrete and continuous time. For the Galton-Watson process a new formula for the rate function in terms of the Legendre transform of its offspring distribution is derived. Further analysis of the approximate path to extinction produces a new interesting formula.Cramer's theorem, extinction, Galton-Watson process, large deviations, Legendre transform,
Estimation and Prediction of a Non-Constant Volatility
Non-constant volatility, Approximating and forecasting volatility, BlackâScholes formula, Best linear predictor,