4 research outputs found
Proposal for a CFT interpretation of Watts' differential equation for percolation
G. M. T. Watts derived that in two dimensional critical percolation the
crossing probability Pi_hv satisfies a fifth order differential equation which
includes another one of third order whose independent solutions describe the
physically relevant quantities 1, Pi_h, Pi_hv.
We will show that this differential equation can be derived from a level
three null vector condition of a rational c=-24 CFT and motivate how this
solution may be fitted into known properties of percolation.Comment: LaTeX, 20p, added references, corrected typos and additional content
Crossing probabilities and modular forms.
Summary: We examine crossing probabilities and free energies for conformally invariant critical 2-D systems in rectangular geometries, derived via conformal field theory and stochastic Löwner evolution methods. These quantities are shown to exhibit interesting modular behavior, although the physical meaning of modular transformations in this context is not clear. We show that in many cases these functions are completely characterized by very simple transformation properties. In particular, Cardy's function for the percolation crossing probability (including the conformal dimension 1/3), follows from a simple modular argument. A new type of ``higher-order modular form" arises and its properties are discussed briefly