2,661 research outputs found
Hydrodynamic modeling of deconfinement phase transition in nuclear collisions
The (3+1)-dimensional ideal hydrodynamics is used to simulate collisions of
gold nuclei with bombarding energies from 1 to 160 GeV per nucleon. The initial
state is represented by two cold Lorentz-boosted nuclei. Two equations of
state: with and without the deconfinement phase transition are used. We have
investigated dynamical trajectories of compressed baryon-rich matter as
functions of various thermodynamical variables. The parameters of collective
flow and hadronic spectra are calculated. It is shown that presence of the
deconfinement phase transition leads to increase of the elliptic flow and to
flattening of proton rapidity distributions.Comment: 11 pages, 6 figure
Charm quenching in heavy-ion collisions at the LHC
D-meson suppression in Pb-Pb collisions at the LHC due to charm quark
in-medium energy loss is estimated within a model that describes the available
quenching measurements at RHIC. The result is compared to that previously
published by the author. The expected sensitivity of the ALICE experiment for
studying charm energy loss via fully-reconstructed D^0-meson decays is also
presented.Comment: 8 pages, 3 figures. To appear in the proceedings of Hot Quarks 2004:
Workshop for Young Scientists on the Physics of Ultrarelativistic
Nucleus-Nucleus Collisions, Taos Valley, New Mexico, 18-24 July 2004.
Submitted to J. Phys.
A Cone Jet-Finding Algorithm for Heavy-Ion Collisions at LHC Energies
Standard jet finding techniques used in elementary particle collisions have
not been successful in the high track density of heavy-ion collisions. This
paper describes a modified cone-type jet finding algorithm developed for the
complex environment of heavy-ion collisions. The primary modification to the
algorithm is the evaluation and subtraction of the large background energy,
arising from uncorrelated soft hadrons, in each collision. A detailed analysis
of the background energy and its event-by-event fluctuations has been performed
on simulated data, and a method developed to estimate the background energy
inside the jet cone from the measured energy outside the cone on an
event-by-event basis. The algorithm has been tested using Monte-Carlo
simulations of Pb+Pb collisions at TeV for the ALICE detector at
the LHC. The algorithm can reconstruct jets with a transverse energy of 50 GeV
and above with an energy resolution of .Comment: 13 pages, 7 figure
- …