347 research outputs found
Mermin-Ho vortex in ferromagnetic spinor Bose-Einstein condensates
The Mermin-Ho and Anderson-Toulouse coreless non-singular vortices are
demonstrated to be thermodynamically stable in ferromagnetic spinor
Bose-Einstein condensates with the hyperfine state F=1. The phase diagram is
established in a plane of the rotation drive vs the total magnetization by
comparing the energies for other competing non-axis-symmetric or singular
vortices. Their stability is also checked by evaluating collective modes.Comment: 4 pages, 4 figure
Formation of atomic tritium clusters and condensates
We present an extensive study of the static and dynamic properties of systems
of spin-polarized tritium atoms. In particular, we calculate the two-body
|F,m_F>=|0,0> s-wave scattering length and show that it can be manipulated via
a Feshbach resonance at a field strength of about 870G. Such a resonance might
be exploited to make and control a Bose-Einstein condensate of tritium in the
|0,0> state. It is further shown that the quartet tritium trimer is the only
bound hydrogen isotope and that its single vibrational bound state is a
Borromean state. The ground state properties of larger spin-polarized tritium
clusters are also presented and compared with those of helium clusters.Comment: 5 pages, 3 figure
Spontaneous symmetry breaking in a quenched ferromagnetic spinor Bose condensate
A central goal in condensed matter and modern atomic physics is the
exploration of many-body quantum phases and the universal characteristics of
quantum phase transitions in so far as they differ from those established for
thermal phase transitions. Compared with condensed-matter systems, atomic gases
are more precisely constructed and also provide the unique opportunity to
explore quantum dynamics far from equilibrium. Here we identify a second-order
quantum phase transition in a gaseous spinor Bose-Einstein condensate, a
quantum fluid in which superfluidity and magnetism, both associated with
symmetry breaking, are simultaneously realized. Rb spinor condensates
were rapidly quenched across this transition to a ferromagnetic state and
probed using in-situ magnetization imaging to observe spontaneous symmetry
breaking through the formation of spin textures, ferromagnetic domains and
domain walls. The observation of topological defects produced by this symmetry
breaking, identified as polar-core spin-vortices containing non-zero spin
current but no net mass current, represents the first phase-sensitive in-situ
detection of vortices in a gaseous superfluid.Comment: 6 pages, 4 figure
Magnetism in a lattice of spinor Bose condensates
We study the ground state magnetic properties of ferromagnetic spinor
Bose-Einstein condensates confined in a deep optical lattices. In the Mott
insulator regime, the ``mini-condensates'' at each lattice site behave as
mesoscopic spin magnets that can interact with neighboring sites through both
the static magnetic dipolar interaction and the light-induced dipolar
interaction. We show that such an array of spin magnets can undergo a
ferromagnetic or anti-ferromagnetic phase transition under the magnetic dipolar
interaction depending on the dimension of the confining optical lattice. The
ground-state spin configurations and related magnetic properties are
investigated in detail
Energies and damping rates of elementary excitations in spin-1 Bose-Einstein condensed gases
Finite temperature Green's function technique is used to calculate the
energies and damping rates of elementary excitations of the homogeneous,
dilute, spin-1 Bose gases below the Bose-Einstein condensation temperature both
in the density and spin channels. For this purpose the self-consistent
dynamical Hartree-Fock model is formulated, which takes into account the direct
and exchange processes on equal footing by summing up certain classes of
Feynman diagrams. The model is shown to fulfil the Goldstone theorem and to
exhibit the hybridization of one-particle and collective excitations correctly.
The results are applied to the gases of ^{23}Na and ^{87}Rb atoms.Comment: 26 pages, 21 figures. Added 2 new figures, detailed discussio
Recommended from our members
Small States in the Rearview Mirror: Legitimacy in the Management of Economy and Society
Small States in World Markets is about political efficacy and legitimation rather than scoring who is ahead in the economic sweepstakes. Its case for democratic corporatism rests on norms, particularly stability, rather than on narrow measures of economic efficiency. But stability and the efficacious management of the economy and social problems requires a degree of technocracy that undermines the legitimacy of the management process itself by helping to produce populist revolts
Coherent spinor dynamics in a spin-1 Bose condensate
Collisions in a thermal gas are perceived as random or incoherent as a
consequence of the large numbers of initial and final quantum states accessible
to the system. In a quantum gas, e.g. a Bose-Einstein condensate or a
degenerate Fermi gas, the phase space accessible to low energy collisions is so
restricted that collisions be-come coherent and reversible. Here, we report the
observation of coherent spin-changing collisions in a gas of spin-1 bosons.
Starting with condensates occupying two spin states, a condensate in the third
spin state is coherently and reversibly created by atomic collisions. The
observed dynamics are analogous to Josephson oscillations in weakly connected
superconductors and represent a type of matter-wave four-wave mixing. The
spin-dependent scattering length is determined from these oscillations to be
-1.45(18) Bohr. Finally, we demonstrate coherent control of the evolution of
the system by applying differential phase shifts to the spin states using
magnetic fields.Comment: 19 pages, 3 figure
Vortices in multicomponent Bose-Einstein condensates
We review the topic of quantized vortices in multicomponent Bose-Einstein
condensates of dilute atomic gases, with an emphasis on that in two-component
condensates. First, we review the fundamental structure, stability and dynamics
of a single vortex state in a slowly rotating two-component condensates. To
understand recent experimental results, we use the coupled Gross-Pitaevskii
equations and the generalized nonlinear sigma model. An axisymmetric vortex
state, which was observed by the JILA group, can be regarded as a topologically
trivial skyrmion in the pseudospin representation. The internal, coherent
coupling between the two components breaks the axisymmetry of the vortex state,
resulting in a stable vortex molecule (a meron pair). We also mention
unconventional vortex states and monopole excitations in a spin-1 Bose-Einstein
condensate. Next, we discuss a rich variety of vortex states realized in
rapidly rotating two-component Bose-Einstein condensates. We introduce a phase
diagram with axes of rotation frequency and the intercomponent coupling
strength. This phase diagram reveals unconventional vortex states such as a
square lattice, a double-core lattice, vortex stripes and vortex sheets, all of
which are in an experimentally accessible parameter regime. The coherent
coupling leads to an effective attractive interaction between two components,
providing not only a promising candidate to tune the intercomponent interaction
to study the rich vortex phases but also a new regime to explore vortex states
consisting of vortex molecules characterized by anisotropic vorticity. A recent
experiment by the JILA group vindicated the formation of a square vortex
lattice in this system.Comment: 69 pages, 25 figures, Invited review article for International
Journal of Modern Physics
Interleukin-6 trans signalling enhances photodynamic therapy by modulating cell cycling
Photodynamic therapy (PDT) of solid tumours causes tissue damage that elicits local and systemic inflammation with major involvement of interleukin-6 (IL-6). We have previously reported that PDT-treated cells lose responsiveness to IL-6 cytokines. Therefore, it is unclear whether PDT surviving tumour cells are subject to regulation by IL-6 and whether this regulation could contribute to tumour control by PDT. We demonstrate in epithelial tumour cells that while the action of IL-6 cytokines through their membrane receptors is attenuated, regulation by IL-6 via trans-signalling is established. Soluble interleukin-6 receptor-α (IL-6Rα) (sIL-6Rα) and IL-6 were released by leucocytes in the presence of conditioned medium from PDT-treated tumour cells. Cells that had lost their membrane receptor IL-6Rα due to PDT responded to treatment with the IL-6RâIL-6 complex (Hyper-IL-6) with activation of signal transducers and activator of transcription (STAT3) and ERK. Photodynamic therapy-treated cells, which were maintained during post-PDT recovery in presence of IL-6 or Hyper-IL-6, showed an enhanced suppression of proliferation. Cytokine-dependent inhibition of proliferation correlated with a decrease in cyclin E, CDK2 and Cdc25A, and enhancement of p27kip1 and hypophosphorylated Rb. The IL-6 trans-signalling-mediated attenuation of cell proliferation was also effective in vivo detectable by an improved Colon26 tumour cure by PDT combined with Hyper-IL-6 treatment. Prevention of IL-6 trans-signalling using soluble gp130 reduced curability. The data suggest that the post-PDT tumour milieu contains the necessary components to establish effective IL-6 trans-signalling, thus providing a means for more effective tumour control
- âŠ