20 research outputs found

    Face recognition based on the proximity measure clustering

    Get PDF
    In this paper problems of featureless face recognition are considered. The recognition is based on clustering the proximity measures between the distributions of brightness clusters cardinality for segmented images. As a proximity measure three types of distances are used in this work: the Euclidean, cosine and Kullback-Leibler distances. Image segmentation and proximity measure clustering are carried out by means of a software model of the recurrent neural network. Results of the experimental studies of the proposed approach are presented

    Effectiveness and safety of opicapone in Parkinson’s disease patients with motor fluctuations: the OPTIPARK open-label study

    Get PDF
    Background The efficacy and safety of opicapone, a once-daily catechol-O-methyltransferase inhibitor, have been established in two large randomized, placebo-controlled, multinational pivotal trials. Still, clinical evidence from routine practice is needed to complement the data from the pivotal trials. Methods OPTIPARK (NCT02847442) was a prospective, open-label, single-arm trial conducted in Germany and the UK under clinical practice conditions. Patients with Parkinson’s disease and motor fluctuations were treated with opicapone 50 mg for 3 (Germany) or 6 (UK) months in addition to their current levodopa and other antiparkinsonian treatments. The primary endpoint was the Clinician’s Global Impression of Change (CGI-C) after 3 months. Secondary assessments included Patient Global Impressions of Change (PGI-C), the Unified Parkinson’s Disease Rating Scale (UPDRS), Parkinson’s Disease Questionnaire (PDQ-8), and the Non-Motor Symptoms Scale (NMSS). Safety assessments included evaluation of treatment-emergent adverse events (TEAEs) and serious adverse events (SAEs). Results Of the 506 patients enrolled, 495 (97.8%) took at least one dose of opicapone. Of these, 393 (79.4%) patients completed 3 months of treatment. Overall, 71.3 and 76.9% of patients experienced any improvement on CGI-C and PGI-C after 3 months, respectively (full analysis set). At 6 months, for UK subgroup only (n = 95), 85.3% of patients were judged by investigators as improved since commencing treatment. UPDRS scores at 3 months showed statistically significant improvements in activities of daily living during OFF (mean ± SD change from baseline: − 3.0 ± 4.6, p < 0.0001) and motor scores during ON (− 4.6 ± 8.1, p < 0.0001). The mean ± SD improvements of − 3.4 ± 12.8 points for PDQ-8 and -6.8 ± 19.7 points for NMSS were statistically significant versus baseline (both p < 0.0001). Most of TEAEs (94.8% of events) were of mild or moderate intensity. TEAEs considered to be at least possibly related to opicapone were reported for 45.1% of patients, with dyskinesia (11.5%) and dry mouth (6.5%) being the most frequently reported. Serious TEAEs considered at least possibly related to opicapone were reported for 1.4% of patients. Conclusions Opicapone 50 mg was effective and generally well-tolerated in PD patients with motor fluctuations treated in clinical practice. Trial registration Registered in July 2016 at clinicaltrials.gov (NCT02847442)

    Highly Sensitive H2S Sensing with Gold and Platinum Surface-Modified ZnO Nanowire ChemFETs

    No full text
    In this work, we investigate the catalytic effects of gold (Au) and platinum (Pt) nanoparticle layer deposition on highly sensitive zinc oxide (ZnO) nanowires (NWs) used for selective H2S detection in the sub-ppm region. Optimum quality pristine ZnO NWs were grown by high temperature chemical vapor deposition (CVD) in the vapor liquid solid growth (VLS) mode on silicon with a thin Au layer acting as a growth catalyst. The surface of pristine ZnO NWs was modified by systematic magnetron sputtering of discontinuous Au and Pt layers of 0–5 nm thickness. Resistive gas sensors based on the gas sensing mechanism of a chemical field effect transistor (ChemFET) with open gate, which is formed by hundreds of parallel aligned pristine Au-modified or Pt-modified ZnO NWs, were measured toward H2S diluted in dry nitrogen (N2) or in dry synthetic air at room temperature. Gas sensing results showed a largely improved response due to the catalytic effects of metal deposition on the ZnO NW surface. Controlled application of ZnO NW growth under optimized conditions and metal catalyst deposition showed a clear response enhancement toward 1 ppm H2S from the initial 20% achieved with pristine ZnO to over 5000% with ZnO NWs covered by 5 nm of Au, and, hence, significantly lower than the limit of detection
    corecore