13 research outputs found

    Warp-knitted fabrics with great development potential : warp-knitted nitinol structures for use as stents

    No full text

    Wirkstrukturen aus Nitinol für Stentanwendungen

    No full text

    In Vitro Comparison of the Sagittal Split Osteotomy With and Without Inferior Border Osteotomy

    No full text
    Purpose: By adding an osteotomy of the inferior border of the mandibular body to the classic sagittal split osteotomy, the authors expected to prevent unfavorable splits and damage to the inferior alveolar nerve. Materials and Methods: Thirty-five human mandibles were used to perform 70 sagittal split osteotomies as an in vitro study. Conducted as a split-mouth model, each mandible was split at the midline. One side of the mandible was split using the traditional Obwegeser-Dal Pont technique, and the other side was split in the same manner with an additional osteotomy of the inferior mandible border. The torque used to split the mandible was measured, and the fracture line of the mandible was recorded. Results: The average torque associated with the original technique was 1.38 Nm (standard deviation, 0.60 Nm), with a fracture line along the mandibular canal. The average torque required to split the hemimandible with the modified technique was 1.02 Nm (standard deviation, 0.50 Nm), a significant (P <.001) difference, with a fracture line parallel to the posterior ramus of the mandible. The fracture pattern depended significantly on the technique used (P <.001), but not on the applied torque force. Conclusion: By adding an osteotomy of the inferior mandibular border to the sagittal split osteotomy, less torque was needed to split the mandible. The fracture line was more predictable, even when all the surgical manipulations were performed at a safe distance from the inferior alveolar nerve

    A Mechanical Analysis of Chemically Stimulated Linear Shape Memory Polymer Actuation

    No full text
    In the present work, we study the role of programming strain (50% and 100%), end loads (0, 0.5, 1.0, and 1.5 MPa), and chemical environments (acetone, ethanol, and water) on the exploitable stroke of linear shape memory polymer (SMP) actuators made from ESTANE ETE 75DT3 (SMP-E). Dynamic mechanical thermal analysis (DMTA) shows how the uptake of solvents results in a decrease in the glass temperature of the molecular switch component of SMP-E. A novel in situ technique allows studying chemically triggered shape recovery as a function of time. It is found that the velocity of actuation decreases in the order acetone > ethanol > water, while the exploitable strokes show the inverse tendency and increases in the order water > ethanol > acetone. The results are interpreted on the basis of the underlying chemical (how solvents affect thermophysical properties) and micromechanical processes (the phenomenological spring dashpot model of Lethersich type rationalizes the behavior). The study provides initial data which can be used for micromechanical modeling of chemically triggered actuation of SMPs. The results are discussed in the light of underlying chemical and mechanical elementary processes, and areas in need of further work are highlighted

    The Influence of Water and Solvent Uptake on Functional Properties of Shape-Memory Polymers

    No full text
    In this contribution, diffusion of water, acetone, and ethanol into a polymer matrix has been studied experimentally and numerically by finite element approaches. Moreover, the present study reports an assessment of different thermomechanical conditions of the shape-memory (SM) performance, for example, stress- or strain-holding times in stress- or strain-controlled thermomechanical cycles and the effect of maximum strain. According to the results presented here, the uptake of acetone in Estane is much higher than ethanol and follows classical Fickian diffusion. Further, a series of thermomechanical measurements conducted on dry and physically (hydrolytically) aged polyether urethanes revealed that incorporation of water seems to have an appreciable impact on the shape recovery ratios which can be attributed to the additional physical crosslinks. However, no obvious difference in shape fixation of dry and physically (hydrolytically) aged samples could be recognized. Furthermore, by decreasing the strain-holding time, shape recovery improves significantly. Moreover, the shape fixity is found to be independent of holding time. The shape recovery ratio decreased dramatically with an increase in the stress-holding time
    corecore