23 research outputs found
Charged-Particle Multiplicity in Proton-Proton Collisions
This article summarizes and critically reviews measurements of
charged-particle multiplicity distributions and pseudorapidity densities in
p+p(pbar) collisions between sqrt(s) = 23.6 GeV and sqrt(s) = 1.8 TeV. Related
theoretical concepts are briefly introduced. Moments of multiplicity
distributions are presented as a function of sqrt(s). Feynman scaling, KNO
scaling, as well as the description of multiplicity distributions with a single
negative binomial distribution and with combinations of two or more negative
binomial distributions are discussed. Moreover, similarities between the energy
dependence of charged-particle multiplicities in p+p(pbar) and e+e- collisions
are studied. Finally, various predictions for pseudorapidity densities, average
multiplicities in full phase space, and multiplicity distributions of charged
particles in p+p(pbar) collisions at the LHC energies of sqrt(s) = 7 TeV, 10
TeV, and 14 TeV are summarized and compared.Comment: Invited review for Journal of Physics G -- version 2: version after
referee's comment
The response regulator 2 mediates ethylene signallinand hormone signal integration in Arabidopsis
Hormones are important regulators of plant growth and development. In Arabidopsis, perception of the phytohormones ethylene and cytokinln is accomplished by a family of sensor histidine kinases including ethylene-resistant (ETR) 1 and cytokinin-response (CRE) 1. We identified the Arabidopsis response regulator 2 (ARR2) as a signalling component functioning downstream of ETR1 in ethylene signal transduction. Analyses of loss-of-function and ARR2-overexpressing lines as well as functional assays in protoplasts indicate an important role of ARR2 in mediating ethylene responses. Additional investigations indicate that an ETR1-initiated phosphorelay regulates the transcription factor activity of ARR2. This mechanism may create a novel signal transfer from endoplasmic reticulum-associated ETR1 to the nucleus for the regulation of ethylene-response genes. Furthermore, global expression profiling revealed a complex ARR2-involving two-component network that interferes with a multitude of different signalling pathways and thereby contributes to the highly integrated signal processing machinery in higher plants
The response regulator 2 mediates ethylene signalling and hormone signal integration in Arabidopsis
Hormones are important regulators of plant growth and development. In Arabidopsis, perception of the phytohormones ethylene and cytokinin is accomplished by a family of sensor histidine kinases including ethylene-resistant (ETR) 1 and cytokinin-response (CRE) 1. We identified the Arabidopsis response regulator 2 (ARR2) as a signalling component functioning downstream of ETR1 in ethylene signal transduction. Analyses of loss-of-function and ARR2-overexpressing lines as well as functional assays in protoplasts indicate an important role of ARR2 in mediating ethylene responses. Additional investigations indicate that an ETR1-initiated phosphorelay regulates the transcription factor activity of ARR2. This mechanism may create a novel signal transfer from endoplasmic reticulum-associated ETR1 to the nucleus for the regulation of ethylene-response genes. Furthermore, global expression profiling revealed a complex ARR2-involving two-component network that interferes with a multitude of different signalling pathways and thereby contributes to the highly integrated signal processing machinery in higher plants