12 research outputs found

    Magneto-Optical Imaging of Magnetic-Domain Pinning Induced by Chiral Molecules

    Full text link
    Chiral molecules have the potential for creating new magnetic devices by locally manipulating the magnetic properties of metallic surfaces. When chiral polypeptides chemisorb onto ferromagnets they can induce magnetization locally by spin exchange interactions. However, direct imaging of surface magnetization changes induced by chiral molecules was not previously realized. Here, we use Magneto-optical Kerr microscopy to image domains in thin films and show that chiral polypeptides strongly pin domains, increasing the coercive field locally. In our study, we also observe a rotation of the easy magnetic axis towards the out-of-plane, depending on the sample's domain size and the adsorption area. These findings show the potential of chiral molecules to control and manipulate magnetization and open new avenues for future research on the relationship between chirality and magnetization.Comment: 11 pages, 4 figure

    Perspective on unconventional computing using magnetic skyrmions

    Full text link
    Learning and pattern recognition inevitably requires memory of previous events, a feature that conventional CMOS hardware needs to artificially simulate. Dynamical systems naturally provide the memory, complexity, and nonlinearity needed for a plethora of different unconventional computing approaches. In this perspective article, we focus on the unconventional computing concept of reservoir computing and provide an overview of key physical reservoir works reported. We focus on the promising platform of magnetic structures and, in particular, skyrmions, which potentially allow for low-power applications. Moreover, we discuss skyrmion-based implementations of Brownian computing, which has recently been combined with reservoir computing. This computing paradigm leverages the thermal fluctuations present in many skyrmion systems. Finally, we provide an outlook on the most important challenges in this field.Comment: 19 pages and 3 figure

    Time-resolved imaging of pulse-induced magnetization reversal with a microwave assist field

    Full text link
    The reversal of the magnetization under the influence of a field pulse has been previously predicted to be an incoherent process with several competing phenomena such as domain wall relaxation, spin wave-mediated instability regions, and vortex-core mediated reversal dynamics. However, there has been no study on the direct observation of the switching process with the aid of a microwave signal input. We report a time-resolved imaging study of magnetization reversal in patterned magnetic structures under the influence of a field pulse with microwave assistance. The microwave frequency is varied to demonstrate the effect of resonant microwave-assisted switching. We observe that the switching process is dominated by spin wave dynamics generated as a result of magnetic instabilities in the structures, and identify the frequencies that are most dominant in magnetization reversal

    Length Scale of the Spin Seebeck Effect

    Get PDF
    We investigate the origin of the spin Seebeck effect in yttrium iron garnet (YIG) samples for film thicknesses from 20 nm to 50  μm at room temperature and 50 K. Our results reveal a characteristic increase of the longitudinal spin Seebeck effect amplitude with the thickness of the insulating ferrimagnetic YIG, which levels off at a critical thickness that increases with decreasing temperature. The observed behavior cannot be explained as an interface effect or by variations of the material parameters. Comparison to numerical simulations of thermal magnonic spin currents yields qualitative agreement for the thickness dependence resulting from the finite magnon propagation length. This allows us to trace the origin of the observed signals to genuine bulk magnonic spin currents due to the spin Seebeck effect ruling out an interface origin and allowing us to gauge the reach of thermally excited magnons in this system for different temperatures. At low temperature, even quantitative agreement with the simulations is found.United States. Dept. of Energy. Office of Science (Solid-State Solar-Thermal Energy Conversion Center Grant DE-SC0001299)National Science Foundation (U.S.) (Award ECCS1231392

    Micromagnetic study of spin transport in easy-plane antiferromagnetic insulators

    Full text link
    Magnon eigenmodes in easy-plane antiferromagnetic insulators are linearly polarized and are not expected to carry any net spin angular momentum. Motivated by recent nonlocal spin transport experiments in the easy-plane phase of hematite, we perform a series of large-scale micromagnetic simulations in a nonlocal geometry at finite temperatures. We show that by tuning an external magnetic field, we can control the magnon eigenmodes and the polarization of the spin transport signal in these systems. We argue that a coherent beating oscillation between two linearly polarized magnon eigenmodes is the mechanism responsible for finite spin transport in easy-plane antiferromagnetic insulators. The sign of the detected spin signal polarization is also naturally explained by the proposed coherent beating mechanism

    Long-distance spin-transport across the Morin phase transition up to room temperature in ultra-low damping single crystals of the antiferromagnet α-Fe2O3

    Full text link
    Antiferromagnetic materials can host spin-waves with polarizations ranging from circular to linear depending on their magnetic anisotropies. Until now, only easy-axis anisotropy antiferromagnets with circularly polarized spin-waves were reported to carry spin-information over long distances of micrometers. In this article, we report long-distance spin-transport in the easy-plane canted antiferromagnetic phase of hematite and at room temperature, where the linearly polarized magnons are not intuitively expected to carry spin. We demonstrate that the spin-transport signal decreases continuously through the easy-axis to easy-plane Morin transition, and persists in the easy-plane phase through current induced pairs of linearly polarized magnons with dephasing lengths in the micrometer range. We explain the long transport distance as a result of the low magnetic damping, which we measure to be ≤ 10^{−5} as in the best ferromagnets. All of this together demonstrates that long-distance transport can be achieved across a range of anisotropies and temperatures, up to room temperature, highlighting the promising potential of this insulating antiferromagnet for magnon-based devices

    Thickness and power dependence of the spin-pumping effect in Y[subscript 3]Fe[subscript 5]O[subscript 12]Pt heterostructures measured by the inverse spin Hall effect

    Full text link
    The dependence of the spin-pumping effect on the yttrium iron garnet (Y[subscript 3]Fe[subscript 5]O[subscript 12], YIG) thickness detected by the inverse spin Hall effect (ISHE) has been investigated quantitatively. Due to the spin-pumping effect driven by the magnetization precession in the ferrimagnetic insulator Y[subscript 3]Fe[subscript 5]O[subscript 12] film a spin-polarized electron current is injected into the Pt layer. This spin current is transformed into electrical charge current by means of the ISHE. An increase of the ISHE voltage with increasing film thickness is observed and compared to the theoretically expected behavior. The effective damping parameter of the YIG/Pt samples is found to be enhanced with decreasing Y[subscript 3]Fe[subscript 5]O[subscript 12] film thickness. The investigated samples exhibit a spin mixing conductance of g[↑↓ over eff] = (3.87 ± 0.21) × 10[superscript 18]m[superscript −2] and a spin Hall angle between θ[subscript ISHE] = 0.013 ± 0.001 and 0.045 ± 0.004 depending on the used spin-diffusion length. Furthermore, the influence of nonlinear effects on the generated voltage and on the Gilbert damping parameter at high excitation powers is revealed. It is shown that for small YIG film thicknesses a broadening of the linewidth due to nonlinear effects at high excitation powers is suppressed because of a lack of nonlinear multimagnon scattering channels. We have found that the variation of the spin-pumping efficiency for thick YIG samples exhibiting pronounced nonlinear effects is much smaller than the nonlinear enhancement of the damping.National Science Foundation (U.S.

    Anisotropies and magnetic phase transitions in insulating antiferromagnets determined by a Spin-Hall magnetoresistance probe

    Get PDF
    Antiferromagnets possess a number of intriguing and promising properties for electronic devices, which include a vanishing net magnetic moment and thus insensitivity to large magnetic fields and characteristic terahertz frequency dynamics. However, probing the antiferromagnetic ordering is challenging without synchrotron-based facilities. Here, we determine the material parameters of the insulating iron oxide hematite, α-Fe2O3, using the surface sensitive spin-Hall magnetoresistance (SMR). Combined with a simple analytical model, we extract the antiferromagnetic anisotropies and the bulk Dzyaloshinskii-Moriya field over a wide range of temperatures and magnetic fields. Across the Morin phase transition, we show that the electrical response is dominated by the antiferromagnetic Néel vector rather than by the emergent weak magnetic moment. Our results highlight that the surface sensitivity of SMR enables access to the magnetic anisotropies of antiferromagnetic crystals, and also of thin films, where other methods to determine anisotropies such as bulk-sensitive magnetic susceptibility measurements do not provide sufficient sensitivity

    Enhanced Magneto-optic Kerr Effect and Magnetic Properties of CeY[subscript 2]Fe[subscript 5]O[subscript 12] Epitaxial Thin Films

    Full text link
    The magnetic and magneto-optic properties of epitaxial CeY[subscript 2]Fe[subscript 5]O[subscript 12] (Ce ∶ YIG) and Y[subscript 3]Fe[subscript 5]O[subscript 12] (yttrium iron garnet or YIG) thin films grown by pulsed laser deposition on gadolinium gallium garnet substrates are determined. An enhanced Faraday effect is known to result from Ce substitution into the yttrium iron garnet lattice, and here we characterize the magneto-optic Kerr effect, as well as the magnetic hysteresis and ferromagnetic resonance response that result from the Ce substitution. X-ray diffraction analysis reveals a high crystallographic quality for the Ce ∶ YIG films. Measurements of the magneto-optic Kerr effect for two different wavelengths demonstrate that the Ce ∶ YIG exhibits an up-to-tenfold increase in Kerr rotation compared to YIG. The Ce ∶ YIG has a slightly larger magnetic moment, as well as increased magnetic damping and higher magnetic anisotropy compared to YIG with a dependence on the crystalline orientation. By specific cerium substitution in YIG, our results show that the engineering of a large Kerr effect and tailored magnetic anisotropy becomes possible as required for magneto-optically active spintronic devices.Deutsche Forschungsgemeinschaft (SPP 1538 "Spin Caloric Transport")Graudate School of Excellence Materials Science in Mainz (GSC 266)Germany. Federal Ministry of Education and Science ("Mainz-MIT Seed Fund" BMBF 01DM12012)European Commission (IFOX, NMP3-LA-2012246102)European Commission (INSPIN, FP7-ICT-2013-X 612759)European Commission (MASPIC, ERC-2007-StG 208162)National Science Foundation (U.S.
    corecore