19 research outputs found

    Genomic investigations of unexplained acute hepatitis in children

    Get PDF
    Since its first identification in Scotland, over 1,000 cases of unexplained paediatric hepatitis in children have been reported worldwide, including 278 cases in the UK1. Here we report an investigation of 38 cases, 66 age-matched immunocompetent controls and 21 immunocompromised comparator participants, using a combination of genomic, transcriptomic, proteomic and immunohistochemical methods. We detected high levels of adeno-associated virus 2 (AAV2) DNA in the liver, blood, plasma or stool from 27 of 28 cases. We found low levels of adenovirus (HAdV) and human herpesvirus 6B (HHV-6B) in 23 of 31 and 16 of 23, respectively, of the cases tested. By contrast, AAV2 was infrequently detected and at low titre in the blood or the liver from control children with HAdV, even when profoundly immunosuppressed. AAV2, HAdV and HHV-6 phylogeny excluded the emergence of novel strains in cases. Histological analyses of explanted livers showed enrichment for T cells and B lineage cells. Proteomic comparison of liver tissue from cases and healthy controls identified increased expression of HLA class 2, immunoglobulin variable regions and complement proteins. HAdV and AAV2 proteins were not detected in the livers. Instead, we identified AAV2 DNA complexes reflecting both HAdV-mediated and HHV-6B-mediated replication. We hypothesize that high levels of abnormal AAV2 replication products aided by HAdV and, in severe cases, HHV-6B may have triggered immune-mediated hepatic disease in genetically and immunologically predisposed children

    Barriers to drug adherence in the treatment of urea cycle disorders: Assessment of patient, caregiver and provider perspectives

    No full text
    Patients and families living with metabolic disorders face challenging dietary and drug treatment regimens. On the hypothesis that poor palatability, volume and frequency of drug/formula administration contribute to treatment non-adherence and hyperammonemic episodes, a survey was conducted of patient, caregiver (CG) and physician perspectives on treatments used in urea cycle disorders (UCD). Methods: A paper and online survey assessed experience with UCD medications, medical foods and dietary supplements. Results: 25 physicians, 52 adult patients and 114 CG responded. In 2009, the most common UCD-specific intervention reported by patients included sodium phenylbutyrate (60%), followed by l-citrulline (46%), amino acid medical foods (15%), l-arginine preparations (18%), and sodium benzoate (8%). Only 36% of patients reported experiencing no hyperammonemic episodes in the last 2 years. The most commonly reported cause of hyperammonemic episodes was infection or other acute illnesses, followed by dietary indiscretion, side effects of medications, and drug non-adherence. Most patients, caregivers and physicians (>75%) ranked nitrogen-scavenging medications, l-citrulline, l-arginine, and medical foods as “effective” or “very effective.” Non-adherence was common (e.g. 18% of patients admitted to missing sodium phenylbutyrate “at least once a week” and “at least one a day”). Barriers to adherence included taste of medications, frequency of drug administration, number of pills, difficulty swallowing pills, side effects, forgetting to take medications, and high cost. Strategies to mitigate the gastrointestinal side effects of medications included the use of gastric tubes and acid reflux medications. Physicians indicated that 25% and 33% of pediatric and adult patients, respectively, were given less than the recommended dose of sodium phenylbutyrate due to concerns of tolerance, administration, and cost. Conclusions: Despite positive views of their effectiveness, respondents found medications, medical foods and dietary supplements difficult to take and viewed adherence as inadequate, thus contributing to hyperammonemic episodes

    Population pharmacokinetic modeling and dosing simulations of nitrogen-scavenging compounds: Disposition of glycerol phenylbutyrate and sodium phenylbutyrate in adult and pediatric patients with urea cycle disorders.

    No full text
    Sodium phenylbutyrate and glycerol phenylbutyrate mediate waste nitrogen excretion in the form of urinary phenylacetylglutamine (PAGN) in patients with urea cycle disorders (UCDs); rare genetic disorders characterized by impaired urea synthesis and hyperammonemia. Sodium phenylbutyrate is approved for UCD treatment; the development of glycerol phenylbutyrate afforded the opportunity to characterize the pharmacokinetics (PK) of both compounds. A population PK model was developed using data from four Phase II/III trials that collectively enrolled patients ages 2 months to 72 years. Dose simulations were performed with particular attention to phenylacetic acid (PAA), which has been associated with adverse events in non-UCD populations. The final model described metabolite levels in plasma and urine for both drugs and was characterized by (a) partial presystemic metabolism of phenylbutyric acid (PBA) to PAA and/or PAGN, (b) slower PBA absorption and greater presystemic conversion with glycerol phenylbutyrate, (c) similar systemic disposition with saturable conversion of PAA to PAGN for both drugs, and (d) body surface area (BSA) as a significant covariate accounting for age-related PK differences. Dose simulations demonstrated similar PAA exposure following mole-equivalent PBA dosing of both drugs and greater PAA exposure in younger patients based on BSA

    Phase 2 comparison of a novel ammonia scavenging agent with sodium phenylbutyrate in patients with urea cycle disorders: safety, pharmacokinetics and ammonia control

    No full text
    Glycerol phenylbutyrate (glyceryl tri (4-phenylbutyrate)) (GPB) is being studied as an alternative to sodium phenylbutyrate (NaPBA) for the treatment of urea cycle disorders (UCDs). This phase 2 study explored the hypothesis that GPB offers similar safety and ammonia control as NaPBA, which is currently approved as adjunctive therapy in the chronic management of UCDs, and examined correlates of 24-h blood ammonia.METHODS: An open-label, fixed sequence switch-over study was conducted in adult UCD patients taking maintenance NaPBA. Blood ammonia and blood and urine metabolites were compared after 7 days (steady state) of TID dosing on either drug, both dosed to deliver the same amount of phenylbutyric acid (PBA).RESULTS: Ten subjects completed the study. Adverse events were comparable for the two drugs; 2 subjects experienced hyperammonemic events on NaPBA while none occurred on GPB. Ammonia values on GPB were approximately 30% lower than on NaPBA (time-normalized AUC=26.2 vs. 38.4 micromol/L; Cmax=56.3 vs. 79.1 micromol/L; not statistically significant), and GPB achieved non-inferiority to NaPBA with respect to ammonia (time-normalized AUC) by post hoc analysis. Systemic exposure (AUC(0-24)) to PBA on GPB was 27% lower than on NaPBA (540 vs. 739 microgh/mL), whereas exposure to phenylacetic acid (PAA) (575 vs. 596 microg h/mL) and phenylacetylglutamine (PAGN) (1098 vs. 1133 microg h/mL) were similar. Urinary PAGN excretion accounted for approximately 54% of PBA administered for both NaPBA and GPB; other metabolites accounted for \u3c1%. Intact GPB was generally undetectable in blood and urine. Blood ammonia correlated strongly and inversely with urinary PAGN (r=-0.82; p\u3c0.0001) but weakly or not at all with blood metabolite levels.CONCLUSIONS: Safety and ammonia control with GPB appear at least equal to NaPBA. Urinary PAGN, which is stoichiometrically related to nitrogen scavenging, may be a useful biomarker for both dose selection and adjustment for optimal control of venous ammonia

    Randomized, double‐blind, controlled study of glycerol phenylbutyrate in hepatic encephalopathy

    No full text
    Glycerol phenylbutyrate (GPB) lowers ammonia by providing an alternate pathway to urea for waste nitrogen excretion in the form of phenylacetyl glutamine, which is excreted in urine. This randomized, double‐blind, placebo‐controlled phase II trial enrolled 178 patients with cirrhosis, including 59 already taking rifaximin, who had experienced two or more hepatic encephalopathy (HE) events in the previous 6 months. The primary endpoint was the proportion of patients with HE events. Other endpoints included the time to first event, total number of events, HE hospitalizations, symptomatic days, and safety. GPB, at 6 mL orally twice‐daily, significantly reduced the proportion of patients who experienced an HE event (21% versus 36%; P = 0.02), time to first event (hazard ratio [HR] = 0.56; P < 0.05), as well as total events (35 versus 57; P = 0.04), and was associated with fewer HE hospitalizations (13 versus 25; P = 0.06). Among patients not on rifaximin at enrollment, GPB reduced the proportion of patients with an HE event (10% versus 32%; P < 0.01), time to first event (HR = 0.29; P < 0.01), and total events (7 versus 31; P < 0.01). Plasma ammonia was significantly lower in patients on GPB and correlated with HE events when measured either at baseline or during the study. A similar proportion of patients in the GPB (79%) and placebo groups (76%) experienced adverse events. Conclusion: GPB reduced HE events as well as ammonia in patients with cirrhosis and HE and its safety profile was similar to placebo. The findings implicate ammonia in the pathogenesis of HE and suggest that GPB has therapeutic potential in this population. (Clinicaltrials.gov, NCT00999167). (Hepatology 2014;59:1073‐1083

    Self-reported treatment-associated symptoms among patients with urea cycle disorders participating in glycerol phenylbutyrate clinical trials.

    No full text
    BACKGROUND: Health care outcomes have been increasingly assessed through health-related quality of life (HRQoL) measures. While the introduction of nitrogen-scavenging medications has improved survival in patients with urea cycle disorders (UCDs), they are often associated with side effects that may affect patient compliance and outcomes. METHODS: Symptoms commonly associated with nitrogen-scavenging medications were evaluated in 100 adult and pediatric participants using a non-validated UCD-specific questionnaire. Patients or their caregivers responded to a pre-defined list of symptoms known to be associated with the use of these medications. Responses were collected at baseline (while patients were receiving sodium phenylbutyrate [NaPBA]) and during treatment with glycerol phenylbutyrate (GPB). RESULTS: After 3 months of GPB dosing, there were significant reductions in the proportion of patients with treatment-associated symptoms (69% vs. 46%; p CONCLUSIONS: The reduction in symptoms following 3 months of open-label GPB dosing was similar in pediatric and adult patients and may be related to chemical structure and intrinsic characteristics of the product rather than its effect on ammonia control
    corecore