1,301 research outputs found

    Kinin-B1 receptors in ischaemia-induced pancreatitis: Functional importance and cellular localisation

    Get PDF
    In this study we compare the role of kininB1 and B2 receptors during ischaemia/reperfusion of rat pancreas. Our investigations were prompted by the observation that infusion of a kininB2 receptor antagonist produced significant improvement in acute experimental pancreatitis. In an acute model with two hours of ischaemia/two hours of reperfusion, application of the kininB1 receptor antagonist (CP-0298) alone, or in combination with kininB2 receptor antagonist (CP-0597), significantly reduced the number of adherent leukocytes in postcapillary venules. In a chronic model with five days of reperfusion, the continuous application of kininB1 receptor antagonist or a combination of kininB1 and B2 receptor antagonists markedly reduced the survival rate. In kininreceptor binding studies kininB1 receptor showed a 22-fold increase in expression during the time of ischaemia/ reperfusion. Carboxypeptidase M activity was upregulated 10-fold following two hours of ischaemia and two hours of reperfusion, provided the appropriate specific ligand, desArg10-kallidin and/or desArg9-bradykinin, was used. The occurrence of kininB1 receptor binding sites on acinar cell membranes was demonstrated by microautoradiography. With a specific antibody, the localisation of kininB1 receptor protein was confirmed at the same sites. In conclusion, we have demonstrated the upregulation of the pancreatic acinar cell kininB1 receptors during ischaemia/reperfusion. The novel functional finding was that antagonism of the kininB1 receptors decreased the survival rate in an experimental model of pancreatitis

    Photoluminescence and photoluminescence excitation studies of lateral size effects in Zn_{1-x}Mn_xSe/ZnSe quantum disc samples of different radii

    Full text link
    Quantum disc structures (with diameters of 200 nm and 100 nm) were prepared from a Zn_{0.72}Mn_{0.28}Se/ZnSe single quantum well structure by electron beam lithography followed by an etching procedure which combined dry and wet etching techniques. The quantum disc structures and the parent structure were studied by photoluminescence and photoluminescence excitation spectroscopy. For the light-hole excitons in the quantum well region, shifts of the energy positions are observed following fabrication of the discs, confirming that strain relaxation occurs in the pillars. The light-hole exciton lines also sharpen following disc fabrication: this is due to an interplay between strain effects (related to dislocations) and the lateral size of the discs. A further consequence of the small lateral sizes of the discs is that the intensity of the donor-bound exciton emission from the disc is found to decrease with the disc radius. These size-related effects occur before the disc radius is reduced to dimensions necessary for lateral quantum confinement to occur but will remain important when the discs are made small enough to be considered as quantum dots.Comment: LaTeX2e, 13 pages, 6 figures (epsfig

    Measurement of focusing properties for high numerical aperture optics using an automated submicron beamprofiler

    Full text link
    The focusing properties of three aspheric lenses with numerical aperture (NA) between 0.53 and 0.68 were directly measured using an interferometrically referenced scanning knife-edge beam profiler with sub-micron resolution. The results obtained for two of the three lenses tested were in agreement with paraxial gaussian beam theory. It was also found that the highest NA aspheric lens which was designed for 830nm was not diffraction limited at 633nm. This process was automated using motorized translation stages and provides a direct method for testing the design specifications of high numerical aperture optics.Comment: 6 pages 4 figure

    Systemic hypothermia increases PAI-1 expression and accelerates microvascular thrombus formation in endotoxemic mice

    Get PDF
    INTRODUCTION: Hypothermia during sepsis significantly impairs patient outcome in clinical practice. Severe sepsis is closely linked to activation of the coagulation system, resulting in microthrombosis and subsequent organ failure. Herein, we studied whether systemic hypothermia accelerates microvascular thrombus formation during lipopolysacharide (LPS)-induced endotoxemia in vivo, and characterized the low temperature-induced endothelial and platelet dysfunctions. METHODS: Ferric-chloride induced microvascular thrombus formation was analyzed in cremaster muscles of hypothermic endotoxemic mice. Flow cytometry, ELISA and immunohistochemistry were used to evaluate the effect of hypothermia on endothelial and platelet function. RESULTS: Control animals at 37°C revealed complete occlusion of arterioles and venules after 759 ± 115 s and 744 ± 112 s, respectively. Endotoxemia significantly (p < 0.05) accelerated arteriolar and venular occlusion in 37°C animals (255 ± 35 s and 238 ± 58 s, respectively). This was associated with an increase of circulating endothelial activation markers, agonist-induced platelet reactivity, and endothelial P-selectin and plasminogen activator inhibitor (PAI)-1 expression. Systemic hypothermia of 34°C revealed a slight but not significant reduction of arteriolar (224 ± 35 s) and venular (183 ± 35 s) occlusion times. Cooling of the endotoxemic animals to 31°C core body temperature, however, resulted in a further acceleration of microvascular thrombus formation, in particular in arterioles (127 ± 29 s, p < 0.05 versus 37°C endotoxemic animals). Of interest, hypothermia did not affect endothelial receptor expression and platelet reactivity, but increased endothelial PAI-1 expression and, in particular, soluble PAI-1 antigen (sPAI-Ag) plasma levels. CONCLUSION: LPS-induced endotoxemia accelerates microvascular thrombus formation in vivo, most probably by generalized endothelial activation and increased platelet reactivity. Systemic hypothermia further enhances microthrombosis in endotoxemia. This effect is associated with increased endothelial PAI-1 expression and sPAI-Ag in the systemic circulation rather than further endothelial activation or modulation of platelet reactivity

    Comparison of Zn_{1-x}Mn_xTe/ZnTe multiple-quantum wells and quantum dots by below-bandgap photomodulated reflectivity

    Full text link
    Large-area high density patterns of quantum dots with a diameter of 200 nm have been prepared from a series of four Zn_{0.93}Mn_{0.07}Te/ZnTe multiple quantum well structures of different well width (4 nm, 6 nm, 8 nm and 10 nm) by electron beam lithography followed by Ar+ ion beam etching. Below-bandgap photomodulated reflectivity spectra of the quantum dot samples and the parent heterostructures were then recorded at 10 K and the spectra were fitted to extract the linewidths and the energy positions of the excitonic transitions in each sample. The fitted results are compared to calculations of the transition energies in which the different strain states in the samples are taken into account. We show that the main effect of the nanofabrication process is a change in the strain state of the quantum dot samples compared to the parent heterostructures. The quantum dot pillars turn out to be freestanding, whereas the heterostructures are in a good approximation strained to the ZnTe lattice constant. The lateral size of the dots is such that extra confinement effects are not expected or observed.Comment: 23 pages, LaTeX2e (amsmath, epsfig), 7 EPS figure

    Electron attachment to SF6 and lifetimes of SF6- negative ions

    Get PDF
    We study the process of low-energy electron capture by the SF6 molecule. Our approach is based on the model of Gauyacq and Herzenberg [J. Phys. B 17, 1155 (1984)] in which the electron motion is coupled to the fully symmetric vibrational mode through a weakly bound or virtual s state. By tuning the two free parameters of the model, we achieve an accurate description of the measured electron attachment cross section and good agreement with vibrational excitation cross sections of the fully symmetric mode. An extension of the model provides a limit on the characteristic time of intramolecular vibrational relaxation in highly-excited SF6-. By evaluating the total vibrational spectrum density of SF6-, we estimate the widths of the vibrational Feshbach resonances of the long-lived negative ion. We also analyse the possible distribution of the widths and its effect on the lifetime measurements, and investigate nonexponential decay features in metastable SF6-.Comment: 22 pages, 10 figures, submitted to Phys. Rev.

    Atrial Natriuretic Peptide in Young and Elderly Children with Mild Gastroenteritis

    Get PDF
    Objective. Atrial Natriuretic Peptide (ANP) has natriuretic and diuretic effects, synthesized and stored in the atrial cells, released in response to stretch of the atrial muscle during increase venous return. Acute gastroenteritis (AGE) causes dehydration. We intend to determine whether the decrease in venous return due to dehydration would lead to a decrease in ANP levels. Patients and Methods. This is a prospective observational controlled study. Blood collected from 30 children with AGE and ANP's levels were compared with 25 controls. ANP levels were determined by radioimmunoassay. Results. The study group was in mild dehydration. As a significant difference was found in ANP levels between children in the 3mo–3y group and older children 3y–14y. We analyzed the results according to age. No difference was found between children with AGE and control, in the 3mo–3y, ANP was 12.1 ± 11 pg/ml versus 13.4 ± 12 pg/ml respectively, and 3 ± 2 versus 3.8 ± 3 pg/ml in the 3y–14y groups, respectively. Conclusion. Dehydration due to AGE does not change the ANP's plasma levels. A weak positive correlation between sodium levels and ANP was found r = 0.29. The significant finding of our study is the difference in ANP levels related to age, in the control as well as the GE group

    Numerical Investigation of a Mesoscopic Vehicular Traffic Flow Model Based on a Stochastic Acceleration Process

    Full text link
    In this paper a spatial homogeneous vehicular traffic flow model based on a stochastic master equation of Boltzmann type in the acceleration variable is solved numerically for a special driver interaction model. The solution is done by a modified direct simulation Monte Carlo method (DSMC) well known in non equilibrium gas kinetic. The velocity and acceleration distribution functions in stochastic equilibrium, mean velocity, traffic density, ACN, velocity scattering and correlations between some of these variables and their car density dependences are discussed.Comment: 23 pages, 10 figure

    Primary Cytoreduction and Survival for Patients With Less-Common Epithelial Ovarian Cancer

    Get PDF
    This cohort study examines the association between primary cytoreduction status and survival for patients with less-common, advanced-stage epithelial ovarian carcinoma

    Macroscopic Dynamics of Multi-Lane Traffic

    Full text link
    We present a macroscopic model of mixed multi-lane freeway traffic that can be easily calibrated to empirical traffic data, as is shown for Dutch highway data. The model is derived from a gas-kinetic level of description, including effects of vehicular space requirements and velocity correlations between successive vehicles. We also give a derivation of the lane-changing rates. The resulting dynamic velocity equations contain non-local and anisotropic interaction terms which allow a robust and efficient numerical simulation of multi-lane traffic. As demonstrated by various examples, this facilitates the investigation of synchronization patterns among lanes and effects of on-ramps, off-ramps, lane closures, or accidents.Comment: For related work see http://www.theo2.physik.uni-stuttgart.de/helbing.htm
    corecore