82 research outputs found

    Food neophobia and mealtime food consumption in 4-5 year old children.

    Get PDF
    Background: Previous research has documented a negative association between maternal report of child food neophobia and reported frequency of consumption of fruit, vegetables, and meat. This study aimed to establish whether neophobia is associated with lower intake of these food types in naturalistic mealtime situations. Methods: One hundred and nine parents of 4–5 year olds completed questionnaires which included a six-item version of the Child Food Neophobia Scale (CFNS). The children took part in a series of 3 test lunch meals at weekly intervals at school at which they were presented with: chicken, cheese, bread, cheese crackers, chocolate biscuits, grapes and tomatoes or carrot sticks. Food items served to each child were weighed before and after the meal to assess total intake of items in four categories: Fruit and vegetables, Protein foods, Starchy foods and Snack foods. Pearson Product Moment Correlations and independent t tests were performed to examine associations between scores on the CFNS and consumption during lunches. Results: Neophobia was associated with lower consumption of fruit and vegetables, protein foods and total calories, but there was no association with intake of starch or snack foods. Conclusion: These results support previous research that has suggested that neophobia impacts differentially on consumption of different food types. Specifically it appears that children who score highly on the CFNS eat less fruit, vegetables and protein foods than their less neophobic peers. Attempts to increase intake of fruit, vegetables and protein might usefully incorporate strategies known to reduce the neophobic response

    Terahertz scanning probe microscope

    No full text
    The invention provides aterahertz scanning probe microscope setup comprising (i) a terahertz radiation source configured to generate terahertz radiation; (ii) a terahertz lens configured to receive at least part of the terahertz radiation from the terahertz radiation source; (iii) a cantilever unit comprising a cantilever with at its distal end an electrically conductive tip, a slot-line basedleaky wave antenna configured to receive at least part of the focused terahertz radiation, a stripline electrode with a terahertz radiation receiving part wave antenna and with a tip part in electrical conductive connection with the electrically conductive tip; (iv) a terahertz radiation receiver, configured to receive via the leaky wave antenna returning terahertz radiation from a sample.QN/Quantum NanoscienceApplied Science

    Delft als onderzoeksuniversiteit

    No full text

    Josephson Parametric Reflection Amplifier with Integrated Directionality

    No full text
    A directional superconducting parametric amplifier in the GHz frequency range is designed and analyzed, suitable for low-power read-out of microwave kinetic inductance detectors employed in astrophysics and when combined with a nonreciprocal device at its input also for circuit quantum electrodynamics. It consists of a one-wavelength-long nondegenerate Josephson parametric reflection amplifier circuit. The device has two Josephson-junction oscillators, connected via a tailored impedance to an on-chip passive circuit which directs the in- to the output port. The amplifier provides a gain of 20 dB over a bandwidth of 220 MHz on the signal as well as on the idler portion of the amplified input and the total photon shot noise referred to the input corresponds to maximally approximately 1.3 photons per second per Hertz of bandwidth. We predict a factor of 4 increase in dynamic range compared to conventional Josephson parametric amplifiers.QN/Klapwijk La

    Photon-triggered instability in the flux flow regime of a strongly disordered superconducting strip

    No full text
    We study, theoretically, the single-photon response of a strongly disordered thin superconducting strip in the flux flow state. We find that this resistive state, at a current I larger than the critical current Ic, jumps to the normal state by the absorption of a single optical photon. The absorbed photon creates a beltlike region with suppressed superconductivity and fast moving Josephson-like vortices across the strip. The formed Josephson-like link is not stable in such a superconductor and evolves into a normal domain which expands along the length of the superconducting strip, leading to the transition to the normal state.QN/Klapwijk La

    Engineering Physics of Superconducting Hot-Electron Bolometer Mixers

    No full text
    Superconducting hot-electron bolometers are presently the best performing mixing devices for the frequency range beyond 1.2 THz, where good-quality superconductor-insulator-superconductor devices do not exist. Their physical appearance is very simple: an antenna consisting of a normal metal, sometimes a normal-metal-superconductor bilayer, connected to a thin film of a narrow short superconductor with a high resistivity in the normal state. The device is brought into an optimal operating regime by applying a dc current and a certain amount of local-oscillator power. Despite this technological simplicity, its operation has found to be controlled by many different aspects of superconductivity, all occurring simultaneously. A core ingredient is the understanding that there are two sources of resistance in a superconductor: a charge-conversion resistance occurring at a normal-metal-superconductor interface and a resistance due to time-dependent changes of the superconducting phase. The latter is responsible for the actual mixing process in a nonuniform superconducting environment set up by the bias conditions and the geometry. The present understanding indicates that further improvement needs to be found in the use of other materials with a faster energy relaxation rate. Meanwhile, several empirical parameters have become physically meaningful indicators of the devices, which will facilitate the technological developments.QN/Klapwijk La

    The discovery, disappearance and re-emergence of radiation-stimulated superconductivity

    No full text
    We trace the historical fate of experiment and theory of microwave-stimulated superconductivity as originally reported for constriction-type superconducting weak links. It is shown that the observed effect disappeared by improving weak links to obtain the desired Josephson properties. Separate experiments were carried out to evaluate the validity of the proposed theory of Eliash'berg for energy-gap-enhancement in superconducting films in a microwave field, without reaching a full quantitatively reliable measurement of the stimulated energy gap in a microwave field, but convincing enough to understand the earlier deviations from the Josephson-effect. Over the same time period microwave-stimulated superconductivity continued to be present in superconductor-normal metal-superconductor Josephson weak links. This experimental body of work was left unexplained for several decades and could only be understood properly after the microscopic theory of the proximity-effect had matured enough, including its non-equilibrium aspects. It implies that the increase in critical current in weak-link Josephson-junctions is due to an enhancement of the phase-coherence rather than to an enhancement of the energy-gap as proposed by Eliash'berg. The complex interplay between proximity-effect and the occupation of states continues to be, in a variety of ways, at the core of the ongoing research on hybrid Josephson-junctions. The subject of radiation-enhanced superconductivity has re-emerged in the study of the power-dependence of superconducting microwave resonators, but also in the light-induced emergence of superconductivity in complex materials.QN/Klapwijk La

    Quantum breakdown of superconductivity in low-dimensional materials

    No full text
    In order to understand the emergence of superconductivity it is useful to study the reverse process and identify the various pathways that lead to its destruction. One way is to increase the amount of disorder, as this leads to an increase in Coulomb repulsion that overpowers the attractive interaction responsible for Cooper pair formation. A second pathway—applicable to uniformly disordered materials—is to utilize the competition between superconductivity and Anderson localization, as this leads to electronic granularity in which phase and amplitude fluctuations of the superconducting order parameter play a role. Finally, a third pathway is to construct an array of superconducting islands coupled by some form of proximity effect that leads from a superconducting state to a state with finite resistivity, which appears like a metallic groundstate. This Review Article summarizes recent progress in understanding of these different pathways, including experiments in low dimensional materials and application in superconducting quantum devices.QN/Klapwijk La
    • …
    corecore