653 research outputs found

    A minimal model for short-time diffusion in periodic potentials

    Full text link
    We investigate the dynamics of a single, overdamped colloidal particle, which is driven by a constant force through a one-dimensional periodic potential. We focus on systems with large barrier heights where the lowest-order cumulants of the density field, that is, average position and the mean-squared displacement, show nontrivial (non-diffusive) short-time behavior characterized by the appearance of plateaus. We demonstrate that this "cage-like" dynamics can be well described by a discretized master equation model involving two states (related to two positions) within each potential valley. Non-trivial predictions of our approach include analytic expressions for the plateau heights and an estimate of the "de-caging time" obtained from the study of deviations from Gaussian behaviour. The simplicity of our approach means that it offers a minimal model to describe the short-time behavior of systems with hindered dynamics.Comment: 8 pages, 6 figure

    First Stars. I. Evolution without mass loss

    Full text link
    The first generation of stars was formed from primordial gas. Numerical simulations suggest that the first stars were predominantly very massive, with typical masses M > 100 Mo. These stars were responsible for the reionization of the universe, the initial enrichment of the intergalactic medium with heavy elements, and other cosmological consequences. In this work, we study the structure of Zero Age Main Sequence stars for a wide mass and metallicity range and the evolution of 100, 150, 200, 250 and 300 Mo galactic and pregalactic Pop III very massive stars without mass loss, with metallicity Z=10E-6 and 10E-9, respectively. Using a stellar evolution code, a system of 10 equations together with boundary conditions are solved simultaneously. For the change of chemical composition, which determines the evolution of a star, a diffusion treatment for convection and semiconvection is used. A set of 30 nuclear reactions are solved simultaneously with the stellar structure and evolution equations. Several results on the main sequence, and during the hydrogen and helium burning phases, are described. Low metallicity massive stars are hotter and more compact and luminous than their metal enriched counterparts. Due to their high temperatures, pregalactic stars activate sooner the triple alpha reaction self-producing their own heavy elements. Both galactic and pregalactic stars are radiation pressure dominated and evolve below the Eddington luminosity limit with short lifetimes. The physical characteristics of the first stars have an important influence in predictions of the ionizing photon yields from the first luminous objects; also they develop large convective cores with important helium core masses which are important for explosion calculations.Comment: 17 pages, 24 figures, 2 table

    Magnetic properties of colloidal suspensions of interacting magnetic particles

    Full text link
    We review equilibrium thermodynamic properties of systems of magnetic particles like ferrofluids in which dipolar interactions play an important role. The review is focussed on two subjects: ({\em i}) the magnetization with the initial magnetic susceptibility as a special case and ({\em ii}) the phase transition behavior. Here the condensation ("gas/liquid") transition in the subsystem of the suspended particles is treated as well as the isotropic/ferromagnetic transition to a state with spontaneously generated long--range magnetic order.Comment: Review. 62 pages, 4 figure

    Follow the sign! Top-down contingent attentional capture of masked arrow cues

    Get PDF
    Arrow cues and other overlearned spatial symbols automatically orient attention according to their spatial meaning. This renders them similar to exogenous cues that occur at stimulus location. Exogenous cues trigger shifts of attention even when they are presented subliminally. Here, we investigate to what extent the mechanisms underlying the orienting of attention by exogenous cues and by arrow cues are comparable by analyzing the effects of visible and masked arrow cues on attention. In Experiment 1, we presented arrow cues with overall 50% validity. Visible cues, but not masked cues, lead to shifts of attention. In Experiment 2, the arrow cues had an overall validity of 80%. Now both visible and masked arrows lead to shifts of attention. This is in line with findings that subliminal exogenous cues capture attention only in a top-down contingent manner, that is, when the cues fit the observer’s intentions

    First Stars. II. Evolution with mass loss

    Full text link
    The first stars are assumed to be predominantly massive. Although, due to the low initial abundances of heavy elements the line-driven stellar winds are supposed to be inefficient in the first stars, these stars may loose a significant amount of their initial mass by other mechanisms. In this work, we study the evolution with a prescribed mass loss rate of very massive, galactic and pregalactic, Population III stars, with initial metallicities Z=10−6Z=10^{-6} and Z=10−9Z=10^{-9}, respectively, and initial masses 100, 120, 150, 200, and 250 M⊙\,M_{\odot} during the hydrogen and helium burning phases. The evolution of these stars depends on their initial mass, metallicity and the mass loss rate. Low metallicity stars are hotter, compact and luminous, and they are shifted to the blue upper part in the Hertzprung-Russell diagram. With mass loss these stars provide an efficient mixing of nucleosynthetic products, and depending on the He-core mass their final fate could be either pair-instability supernovae or energetic hypernovae. These stars contributed to the reionization of the universe and its enrichment with heavy elements, which influences the subsequent star formation properties.Comment: Accepted for publication in Astrophysics & Space Science. 15 pages, 18 figure

    Search for charginos in e+e- interactions at sqrt(s) = 189 GeV

    Full text link
    An update of the searches for charginos and gravitinos is presented, based on a data sample corresponding to the 158 pb^{-1} recorded by the DELPHI detector in 1998, at a centre-of-mass energy of 189 GeV. No evidence for a signal was found. The lower mass limits are 4-5 GeV/c^2 higher than those obtained at a centre-of-mass energy of 183 GeV. The (\mu,M_2) MSSM domain excluded by combining the chargino searches with neutralino searches at the Z resonance implies a limit on the mass of the lightest neutralino which, for a heavy sneutrino, is constrained to be above 31.0 GeV/c^2 for tan(beta) \geq 1.Comment: 22 pages, 8 figure

    Control of star formation by supersonic turbulence

    Full text link
    Understanding the formation of stars in galaxies is central to much of modern astrophysics. For several decades it has been thought that stellar birth is primarily controlled by the interplay between gravity and magnetostatic support, modulated by ambipolar diffusion. Recently, however, both observational and numerical work has begun to suggest that support by supersonic turbulence rather than magnetic fields controls star formation. In this review we outline a new theory of star formation relying on the control by turbulence. We demonstrate that although supersonic turbulence can provide global support, it nevertheless produces density enhancements that allow local collapse. Inefficient, isolated star formation is a hallmark of turbulent support, while efficient, clustered star formation occurs in its absence. The consequences of this theory are then explored for both local star formation and galactic scale star formation. (ABSTRACT ABBREVIATED)Comment: Invited review for "Reviews of Modern Physics", 87 pages including 28 figures, in pres

    Hadronization properties of b quarks compared to light quarks in e+e- -> q qbar from 183 to 200 GeV

    Full text link
    The DELPHI detector at LEP has collected 54 pb^{-1} of data at a centre-of-mass energy around 183 GeV during 1997, 158 pb^{-1} around 189 GeV during 1998, and 187 pb^{-1} between 192 and 200 GeV during 1999. These data were used to measure the average charged particle multiplicity in e+e- -> b bbar events, _{bb}, and the difference delta_{bl} between _{bb} and the multiplicity, _{ll}, in generic light quark (u,d,s) events: delta_{bl}(183 GeV) = 4.55 +/- 1.31 (stat) +/- 0.73 (syst) delta_{bl}(189 GeV) = 4.43 +/- 0.85 (stat) +/- 0.61 (syst) delta_{bl}(200 GeV) = 3.39 +/- 0.89 (stat) +/- 1.01 (syst). This result is consistent with QCD predictions, while it is inconsistent with calculations assuming that the multiplicity accompanying the decay of a heavy quark is independent of the mass of the quark itself.Comment: 13 pages, 2 figure
    • 

    corecore