653 research outputs found
A minimal model for short-time diffusion in periodic potentials
We investigate the dynamics of a single, overdamped colloidal particle, which
is driven by a constant force through a one-dimensional periodic potential. We
focus on systems with large barrier heights where the lowest-order cumulants of
the density field, that is, average position and the mean-squared displacement,
show nontrivial (non-diffusive) short-time behavior characterized by the
appearance of plateaus. We demonstrate that this "cage-like" dynamics can be
well described by a discretized master equation model involving two states
(related to two positions) within each potential valley. Non-trivial
predictions of our approach include analytic expressions for the plateau
heights and an estimate of the "de-caging time" obtained from the study of
deviations from Gaussian behaviour. The simplicity of our approach means that
it offers a minimal model to describe the short-time behavior of systems with
hindered dynamics.Comment: 8 pages, 6 figure
First Stars. I. Evolution without mass loss
The first generation of stars was formed from primordial gas. Numerical
simulations suggest that the first stars were predominantly very massive, with
typical masses M > 100 Mo. These stars were responsible for the reionization of
the universe, the initial enrichment of the intergalactic medium with heavy
elements, and other cosmological consequences. In this work, we study the
structure of Zero Age Main Sequence stars for a wide mass and metallicity range
and the evolution of 100, 150, 200, 250 and 300 Mo galactic and pregalactic Pop
III very massive stars without mass loss, with metallicity Z=10E-6 and 10E-9,
respectively. Using a stellar evolution code, a system of 10 equations together
with boundary conditions are solved simultaneously. For the change of chemical
composition, which determines the evolution of a star, a diffusion treatment
for convection and semiconvection is used. A set of 30 nuclear reactions are
solved simultaneously with the stellar structure and evolution equations.
Several results on the main sequence, and during the hydrogen and helium
burning phases, are described. Low metallicity massive stars are hotter and
more compact and luminous than their metal enriched counterparts. Due to their
high temperatures, pregalactic stars activate sooner the triple alpha reaction
self-producing their own heavy elements. Both galactic and pregalactic stars
are radiation pressure dominated and evolve below the Eddington luminosity
limit with short lifetimes. The physical characteristics of the first stars
have an important influence in predictions of the ionizing photon yields from
the first luminous objects; also they develop large convective cores with
important helium core masses which are important for explosion calculations.Comment: 17 pages, 24 figures, 2 table
Magnetic properties of colloidal suspensions of interacting magnetic particles
We review equilibrium thermodynamic properties of systems of magnetic
particles like ferrofluids in which dipolar interactions play an important
role. The review is focussed on two subjects: ({\em i}) the magnetization with
the initial magnetic susceptibility as a special case and ({\em ii}) the phase
transition behavior. Here the condensation ("gas/liquid") transition in the
subsystem of the suspended particles is treated as well as the
isotropic/ferromagnetic transition to a state with spontaneously generated
long--range magnetic order.Comment: Review. 62 pages, 4 figure
Follow the sign! Top-down contingent attentional capture of masked arrow cues
Arrow cues and other overlearned spatial symbols automatically orient attention
according to their spatial meaning. This renders them similar to exogenous cues
that occur at stimulus location. Exogenous cues trigger shifts of attention even
when they are presented subliminally. Here, we investigate to what extent the
mechanisms underlying the orienting of attention by exogenous cues and by arrow
cues are comparable by analyzing the effects of visible and masked arrow cues on
attention. In Experiment 1, we presented arrow cues with overall 50% validity.
Visible cues, but not masked cues, lead to shifts of attention. In Experiment 2,
the arrow cues had an overall validity of 80%. Now both visible and masked
arrows lead to shifts of attention. This is in line with findings that
subliminal exogenous cues capture attention only in a top-down contingent
manner, that is, when the cues fit the observerâs intentions
First Stars. II. Evolution with mass loss
The first stars are assumed to be predominantly massive. Although, due to the
low initial abundances of heavy elements the line-driven stellar winds are
supposed to be inefficient in the first stars, these stars may loose a
significant amount of their initial mass by other mechanisms.
In this work, we study the evolution with a prescribed mass loss rate of very
massive, galactic and pregalactic, Population III stars, with initial
metallicities and , respectively, and initial masses
100, 120, 150, 200, and 250 during the hydrogen and helium burning
phases.
The evolution of these stars depends on their initial mass, metallicity and
the mass loss rate. Low metallicity stars are hotter, compact and luminous, and
they are shifted to the blue upper part in the Hertzprung-Russell diagram. With
mass loss these stars provide an efficient mixing of nucleosynthetic products,
and depending on the He-core mass their final fate could be either
pair-instability supernovae or energetic hypernovae. These stars contributed to
the reionization of the universe and its enrichment with heavy elements, which
influences the subsequent star formation properties.Comment: Accepted for publication in Astrophysics & Space Science. 15 pages,
18 figure
Search for charginos in e+e- interactions at sqrt(s) = 189 GeV
An update of the searches for charginos and gravitinos is presented, based on
a data sample corresponding to the 158 pb^{-1} recorded by the DELPHI detector
in 1998, at a centre-of-mass energy of 189 GeV. No evidence for a signal was
found. The lower mass limits are 4-5 GeV/c^2 higher than those obtained at a
centre-of-mass energy of 183 GeV. The (\mu,M_2) MSSM domain excluded by
combining the chargino searches with neutralino searches at the Z resonance
implies a limit on the mass of the lightest neutralino which, for a heavy
sneutrino, is constrained to be above 31.0 GeV/c^2 for tan(beta) \geq 1.Comment: 22 pages, 8 figure
Control of star formation by supersonic turbulence
Understanding the formation of stars in galaxies is central to much of modern
astrophysics. For several decades it has been thought that stellar birth is
primarily controlled by the interplay between gravity and magnetostatic
support, modulated by ambipolar diffusion. Recently, however, both
observational and numerical work has begun to suggest that support by
supersonic turbulence rather than magnetic fields controls star formation. In
this review we outline a new theory of star formation relying on the control by
turbulence. We demonstrate that although supersonic turbulence can provide
global support, it nevertheless produces density enhancements that allow local
collapse. Inefficient, isolated star formation is a hallmark of turbulent
support, while efficient, clustered star formation occurs in its absence. The
consequences of this theory are then explored for both local star formation and
galactic scale star formation. (ABSTRACT ABBREVIATED)Comment: Invited review for "Reviews of Modern Physics", 87 pages including 28
figures, in pres
Hadronization properties of b quarks compared to light quarks in e+e- -> q qbar from 183 to 200 GeV
The DELPHI detector at LEP has collected 54 pb^{-1} of data at a
centre-of-mass energy around 183 GeV during 1997, 158 pb^{-1} around 189 GeV
during 1998, and 187 pb^{-1} between 192 and 200 GeV during 1999. These data
were used to measure the average charged particle multiplicity in e+e- -> b
bbar events, _{bb}, and the difference delta_{bl} between _{bb} and the
multiplicity, _{ll}, in generic light quark (u,d,s) events: delta_{bl}(183
GeV) = 4.55 +/- 1.31 (stat) +/- 0.73 (syst) delta_{bl}(189 GeV) = 4.43 +/- 0.85
(stat) +/- 0.61 (syst) delta_{bl}(200 GeV) = 3.39 +/- 0.89 (stat) +/- 1.01
(syst). This result is consistent with QCD predictions, while it is
inconsistent with calculations assuming that the multiplicity accompanying the
decay of a heavy quark is independent of the mass of the quark itself.Comment: 13 pages, 2 figure
- âŠ