4 research outputs found
Strongly Coupled QCD at Finite Baryon Density
The analytical results obtained in the infinite mass and strong coupling
limits of QCD are difficult to reconcile with the predictions of the Monomer
Dimer Polymer algorithm. We have reconsidered in detail the results obtained
with this simulation scheme and evidences of severe convergence problems are
presented for the SU(3) and SU(2) gauge group.Comment: LATTICE99(Finite Temperature and Density), 3 pages, 3 postscript
figure
Three and Two Colours Finite Density QCD at Strong Coupling: A New Look
Simulations in finite density, beta=0 lattice QCD by means of the
Monomer-Dimer-Polymer algorithm show a signal of first order transition at
finite temporal size. This behaviour agrees with predictions of the mean field
approximation, but is difficult to reconcile with infinite mass analytical
solution. The MDP simulations are considered in detail and severe convergence
problems are found for the SU(3) gauge group, in a wide region of chemical
potential. Simulations of SU(2) model show discrepancies with MDP results as
well.Comment: 18 pages, 9 figures, to appear in Nucl. Phys.
Diquark Bose Condensates in High Density Matter and Instantons
Instantons lead to strong correlations between up and down quarks with spin
zero and anti-symmetric color wave functions. In cold and dense matter,
and 50 MeV, these pairs Bose-condense,
replacing the usual and
condensates.Comment: 4 pages ReVTeX, 2 eps-figures included using epsf.st
Phase transitions in quantum chromodynamics
The current understanding of finite temperature phase transitions in QCD is
reviewed. A critical discussion of refined phase transition criteria in
numerical lattice simulations and of analytical tools going beyond the
mean-field level in effective continuum models for QCD is presented.
Theoretical predictions about the order of the transitions are compared with
possible experimental manifestations in heavy-ion collisions. Various places in
phenomenological descriptions are pointed out, where more reliable data for
QCD's equation of state would help in selecting the most realistic scenario
among those proposed. Unanswered questions are raised about the relevance of
calculations which assume thermodynamic equilibrium. Promising new approaches
to implement nonequilibrium aspects in the thermodynamics of heavy-ion
collisions are described.Comment: 156 pages, RevTex. Tables II,VIII,IX and Fig.s 1-38 are not included
as postscript files. I would like to ask the requestors to copy the missing
tables and figures from the corresponding journal-referenc