2,440 research outputs found

    Textural evolution and phase transformation in titania membranes: Part 1. -unsupported membranes

    Get PDF
    Textural evolution in sol–gel derived nanostructured unsupported titania membranes has been studied using differential scanning calorimetry (DSC), differential thermal analysis (DTA), thermal gravimetry (TG), X-ray diffraction (XRD) and N2 adsorption. The anatase-to-rutile phase transformation kinetics were studied using the Avrami model. The precursor gel had a surface area of ca. 165 m2 g–1, which after heat treatment at 600 °C for 8 h reduced to zero. Undoped titania-gel layers transformed to more than 95% rutile after calcination at 600 °C for 8 h. The causes of surface-area reduction and pore growth were anatase crystallite growth and the enhanced sintering of rutile during transformation. Lanthanum oxide was identified as a suitable dopant for shifting the transformation temperature to ca. 850 °C. Lanthanum oxide doped titania showed an improved stability of porous texture compared to that of the undoped titania membranes

    Synthesis and textural properties of unsupported and supported rutile (TiO2) membranes

    Get PDF
    Two approaches were postulated for improving the stability of porous texture of titania membranes: (1) retarding the phase transformation and grain growth; (2) avoiding the phase transformation. Based on the second approach, rutile membranes were made directly from a rutile sol, prepared by the precipitation of titania on SnO2 nuclei. The rutile membranes were stable up to 800 °C, with a porosity of ca. 40%, whereas normal titania membranes (starting with anatase) show very little porosity above 600 °C. Alumina substitution retards grain growth and pore growth at 850 °C for unsupported as well as supported membranes. \u

    Textural evolution and phase transformation in titania membranes: Part 2. - Supported membranes

    Get PDF
    Nanostructural evolution and phase transformation in supported and unsupported titania membranes have been studied using Raman spectroscopy, X-ray diffraction (XRD) and field-emission scanning electron microscopy (FE-SEM). Densification of unsupported membranes started at ca. 450 °C and reached more than 97% density at 600 °C, whereas the supported membranes had a density of only ca. 70–75% even at 700 °C when calcined for 8 h. At 700 °C the average crystallite size of supported and unsupported membranes was ca. 20 and 70 nm, respectively. This behaviour is primarily attributed to the decrease in the driving force for sintering due to the stress developed during the constrained sintering of a film attached to a rigid support and to the inhibition of the reorganization process within the film, resulting in lower coordination numbers in supported membranes. Supported membranes showed a higher transformation temperature (slower rate of transformation) than did the unsupported. Supported and unsupported membranes, calcined for 8 h, transformed to ca. 90% rutile (calculated from Raman spectrum) after calcination at 850 and 650 °C, respectively. This difference in phase transformation behaviour is attributed primarily to the large stress which is developed in a constrained environment owing to the negative volume change during the anatase–rutile transformation

    Constrained simulations of the Antennae Galaxies: Comparison with Herschel-PACS observations

    Full text link
    We present a set of hydro-dynamical numerical simulations of the Antennae galaxies in order to understand the origin of the central overlap starburst. Our dynamical model provides a good match to the observed nuclear and overlap star formation, especially when using a range of rather inefficient stellar feedback efficiencies (0.01 < q_EoS < 0.1). In this case a simple conversion of local star formation to molecular hydrogen surface density motivated by observations accounts well for the observed distribution of CO. Using radiative transfer post-processing we model synthetic far-infrared spectral energy distributions (SEDs) and two-dimensional emission maps for direct comparison with Herschel-PACS observations. For a gas-to-dust ratio of 62:1 and the best matching range of stellar feedback efficiencies the synthetic far-infrared SEDs of the central star forming region peak at values of ~65 - 81 Jy at 99 - 116 um, similar to a three-component modified black body fit to infrared observations. Also the spatial distribution of the far-infrared emission at 70 um, 100 um, and 160 um compares well with the observations: >50% (> 35%) of the emission in each band is concentrated in the overlap region while only < 30% (< 15%) is distributed to the combined emission from the two galactic nuclei in the simulations (observations). As a proof of principle we show that parameter variations in the feedback model result in unambiguous changes both in the global and in the spatially resolved observable far-infrared properties of Antennae galaxy models. Our results strengthen the importance of direct, spatially resolved comparative studies of matched galaxy merger simulations as a valuable tool to constrain the fundamental star formation and feedback physics.Comment: 17 pages, 8 figures, 4 tables, submitted to MNRAS, including revisions after first referee report, comments welcom

    Fermionic statistics in the strongly correlated limit of Density Functional Theory

    Full text link
    Exact pieces of information on the adiabatic connection integrand Wλ[ρ]W_{\lambda}[\rho], which allows to evaluate the exchange-correlation energy of Kohn-Sham density functional theory, can be extracted from the leading terms in the strong coupling limit (λ\lambda\to\infty, where λ\lambda is the strength of the electron-electron interaction). In this work, we first compare the theoretical prediction for the two leading terms in the strong coupling limit with data obtained via numerical implementation of the exact Levy functional in the simple case of two electrons confined in one dimension, confirming the asymptotic exactness of these two terms. We then carry out a first study on the incorporation of the fermionic statistics at large coupling λ\lambda, both numerical and theoretical, confirming that spin effects enter at orders eλ\sim e^{-\sqrt{\lambda}}

    Radiofrequency ablation is beneficial in simultaneous treatment of synchronous liver metastases and primary colorectal cancer

    Get PDF
    In patients with resectable synchronous colorectal liver metastases (CRLM), either two-staged or simultaneous resections of the primary tumor and liver metastases are performed. Data on radiofrequency ablation (RFA) for the treatment of CRLM during a simultaneous procedure is lacking. The primary aim was to analyze short-term and long-term outcome of RFA in simultaneous treatment. A secondary aim was to compare simultaneous resection with the colorectal-first approach.Retrospective analysis of 241 patients with colorectal cancer and synchronous CRLM between 2000-2016. Median follow-up was 36.1 months (IQR 18.2-58.8 months). A multivariable analysis was performed to analyze the postoperative morbidity, using the comprehensive complication index. A propensity matched analysis was performed to compare survival rates.In multivariable analysis, the best predictor of lower complication severity was treatment with RFA (p = 0.040). Higher complication rates were encountered in patients who underwent an abdominoperineal resection (p = 0.027) or age > 60 years (p = 0.022). The matched analysis showed comparable overall survival in RFA treated patients versus patients undergoing a liver resection with a five year overall survival of 39.4% and 37.5%, respectively (p = 0.782). In a second matched analysis, 5-year overall survival rates in simultaneously treated patients (43.8%) was comparable to patients undergoing the colorectal first approach (43.0%, p = 0.223).RFA treatment of CRLM in simultaneous procedures is associated with a lower complication severity and non-inferior oncological outcome as compared to partial liver resection. RFA should be considered a useful alternative to liver resection
    corecore