18 research outputs found

    Planung von Laserbestrahlungen durch simulationsbasierte Optimierung

    No full text
    Individualisierte Laserbestrahlungen in der Medizin und der Trend in der Industrie hin zur Losgröße 1 erfordern immer ausgefeiltere Ansätze zur Behandlungs- und Bearbeitungsplanung, die im besten Fall vollautomatisiert erfolgen sollen. Um dies zu erreichen, wird in der Arbeit gezeigt, wie das Prinzip der simulationsbasierten Optimierung zur Planung von Laserbestrahlungen für medizinische Anwendungen eingesetzt werden kann.Both individualised laser irradiations in medicine and the trend to a Jot size of 1 in industry require more sophisticated approaches to planning treatments and processes. In the best case, these approaches work in a fully automated manner. To achieve this, the thesis shows how the method of simulation-based optimization can be used to plan laser irradiations for medical applications

    Shedding Light on Gas-Dynamic Effects in Laser Beam Fusion Cutting: The Potential of Background-Oriented Schlieren Imaging (BOS)

    No full text
    In laser beam fusion cutting of metals, the interaction of the gas jet with the melt determines the dynamics of the melt extrusion and the quality of the resulting cutting kerf. The gas-dynamic phenomena occurring during laser beam cutting are not fully known, especially regarding temporal fluctuations in the gas jet. The observation of gas and melt dynamics is difficult because the gas flow is not directly visible in video recordings and access to the process zone for observation is limited. In this study, the problem of imaging the gas jet from the cutting nozzle is addressed in a novel way by utilizing the striation pattern formed at the cutting kerf as a background pattern for background-oriented Schlieren imaging (BOS). In this first feasibility study, jets of different gas nozzles were observed in front of a solidified cutting kerf, which served as a background pattern for imaging. The results show that imaging of the characteristic shock diamonds of cutting nozzles is possible. Furthermore, the resulting shock fronts from an interaction of the gas jet with a model of a cutting front can be observed. The possibility of high-speed BOS with the proposed method is shown, which could be suitable to extend the knowledge of gas-dynamic phenomena in laser beam fusion cutting

    Properties and Applications of Random Lasers as Emerging Light Sources and Optical Sensors: A Review

    No full text
    In a random laser (RL), optical feedback arises from multiple scattering instead of conventional mirrors. RLs generate a laser-like emission, and meanwhile take advantage of a simpler and more flexible laser configuration. The applicability of RLs as light sources and optical sensors has been proved. These applications have been extended to the biological field, with tissues as natural scattering materials. Herein, the current state of the RL properties and applications was reviewed

    Fabrication of a turbid optofluidic phantom device with tunable μa and μ′s to simulate cutaneous vascular perfusion

    No full text
    Microfluidic devices are oftenly used to calibrate the imaging reconstruction, because they simulate the morphology of microvasculature. However, for lack of optical properties in microfluidics, the functional recovery of oximetry information cannot be verified. In this work, we describe the fabrication of a novel turbid optofluidic tissue phantom. It is designed to mimic the vascular perfusion and the turbid nature of cutaneous tissue. This phantom contains an interior hollow microfluidic structure with a diameter of ϕave = 50 μm. The microfluidic structure includes the geometry of an inlet, a river-like assay and an outlet. This structure can be perfused by hemoglobin solution to mimic the cutaneous micro-circulation. The multiple-layered phantom matrices exhibit the representative optical parameters of human skin cutis, namely the absorption coefficient μa and the reduced scattering coefficient . The geometry of the generated microfluidic structure is investigated by using Spectral-Domain Optical Coherence Tomography. This optofluidic phantom bridges the gap between tissue equivalent phantoms and Lab-On-Chip devices. Perspectively, this device can be used to calibrate a variety of optical angiographic imaging approaches

    A quantitative evaluation of the use of medical lasers in German hospitals

    No full text
    Abstract The laser has become an integral part of modern medicine, procedures based on this technique have found their way into a multitude of medical disciplines. There is, however, no data available on the detailed quantitative development of laser use in the medical sector. This fact gave rise to the idea of the present study, which analyzed the raw data of the quality report of German hospitals with respect to this subject. Over the 9 years of report, a steady increase in the cumulative number of cases was evident, although not all body regions in which the medical laser is used followed this trend. The CO2 laser was found to be the most commonly applied laser, even though a large spectrum of different laser types is used. Based on the present study, the importance of the laser for medical purposes can be confirmed

    Preparation of a skin equivalent phantom with interior micron-scale vessel structures for optical imaging experiments

    No full text
    A popular alternative of preparing multilayer or microfluidic chip based phantoms could have helped to simulate the subsurface vascular network, but brought inevitable problems. In this work, we describe the preparation method of a single layer skin equivalent tissue phantom containing interior vessel channels, which mimick the superficial microvascular structure. The fabrication method does not disturb the optical properties of the turbiding matrix material. The diameter of the channels reaches a value of 50 μm. The size, as well as the geometry of the generated vessel structures are investigated by using the SD-OCT system. Our preliminary results confirm that fabrication of such a phantom is achievable and reproducible. Prospectively, this phantom is used to calibrate the optical angiographic imaging approaches

    Experimental Validation of Shifted Position-Diffuse Reflectance Imaging (SP-DRI) on Optical Phantoms

    No full text
    Numerous diseases such as hemorrhage, sepsis or cardiogenic shock induce a heterogeneous perfusion of the capillaries. To detect such alterations in the human blood flow pattern, diagnostic devices must provide an appropriately high spatial resolution. Shifted position-diffuse reflectance imaging (SP-DRI) has the potential to do so; it is an all-optical diagnostic technique. So far, SP-DRI has mainly been developed using Monte Carlo simulations. The present study is therefore validating this algorithm experimentally on realistic optical phantoms with thread structures down to 10 μm in diameter; a SP-DRI sensor prototype was developed and realized by means of additive manufacturing. SP-DRI turned out to be functional within this experimental framework. The position of the structures within the optical phantoms become clearly visible using SP-DRI, and the structure thickness is reflected as modulation in the SP-DRI signal amplitude; this performed well for a shift along the x axis as well as along the y axis. Moreover, SP-DRI successfully masked the pronounced influence of the illumination cone on the data. The algorithm showed significantly superior to a mere raw data inspection. Within the scope of the study, the constructive design of the SP-DRI sensor prototype is discussed and potential for improvement is explored
    corecore