16 research outputs found

    Canine specific ELISA for coagulation factor VII

    Get PDF
    Canine coagulation factor VII (FVII) deficiency can be hereditary or acquired and may cause life threatening bleeding episodes if untreated. FVII procoagulant activity can be measured by FVII activity (FVII:C), but assays for measurement of canine specific FVII antigen (FVII:Ag) have not been available to date. In this study, a canine specific ELISA for measurement of FVII:Ag in plasma was developed and validated. The FVII:Ag ELISA correctly diagnosed homozygous and heterozygous hereditary FVII deficiency. Together with activity based assays, such as FVII:C, the FVII:Ag ELISA should be valuable in the diagnosis of hereditary canine FVII deficiency

    Disulfide bonds and glycosylation in fungal peroxidases

    No full text
    Four conserved disulfide bonds and N-linked and O-linked glycans of extracellular fungal peroxidases have been identified from studies of a lignin and a manganese peroxidase from Trametes versicolor, and from Coprinus cinereus peroxidase (CIP) and recombinant C. cinereus peroxidase (rCIP) expressed in Aspergillus oryzae. The eight cysteine residues are linked 1-3, 2-7, 4-5 and 6-8, and are located differently from the four conserved disulfide bridges present in the homologous plant peroxidases. CIP and rCIP were identical in their, glycosylation pattern, although the extent of glycan chain heterogeneity depended on the fermentation batch. CIP and rCIP have one N-linked glycan composed only of GlcNAc and Man at residue Asn142, and two O-linked glycans near the C-terminus. The major glycoform consists of single Man residues at Thr331 and at Ser338. T. versicolor lignin isoperoxidase TvLP10 contains a single N-linked glycan composed of (GlcNAc)(2)Man(5) bound to Asn103, whereas (GlcNAc)(2)Man(3) was found in T. versicolor manganese isoperoxidase TvMP2 at the same position. In addition, mass spectrometry of the C-terminal peptide of TvMP2 indicated the presence of five Man residues in O-linked glycans. No phosphate was found in these fungal peroxidases

    Factor VIII C1 domain spikes 2092-2093 and 2158-2159 comprise regions that modulate cofactor function and cellular uptake

    No full text
    The C1 domain of factor VIII (FVIII) has been implicated in binding to multiple constituents, including phospholipids, von Willebrand factor, and low-density lipoprotein receptor-related protein (LRP). We have previously described a human monoclonal antibody called KM33 that blocks these interactions as well as cellular uptake by LRP-expressing cells. To unambiguously identify the apparent "hot spot" on FVIII to which this antibody binds, we have employed hydrogen-deuterium exchange mass spectrometry. The results showed that KM33 protects FVIII regions 2091-2104 and 2157-2162 from hydrogen-deuterium exchange. These comprise the two C1 domain spikes 2092-2093 and 2158-2159. Spike 2092-2093 has been demonstrated recently to contribute to assembly with lipid membranes with low phosphatidylserine (PS) content. Therefore, spike 2158-2159 might serve a similar role. This was assessed by replacement of Arg-2159 for Asn, which introduces a motif for N-linked glycosylation. Binding studies revealed that the purified, glycosylated R2159N variant had lost its interaction with antibody KM33 but retained substantial binding to von Willebrand factor and LRP. Cellular uptake of the R2159N variant was reduced both by LRP-expressing U87-MG cells and by human monocyte-derived dendritic cells. FVIII activity was virtually normal on membranes containing 15% PS but reduced at low PS content. These findings suggest that the C1 domain spikes 2092-2093 and 2158-2159 together modulate FVIII membrane assembly by a subtle, PS-dependent mechanism. These findings contribute evidence in favor of an increasingly important role of the C1 domain in FVIII biolog

    High-dose erythropoietin alters platelet reactivity and bleeding time in rodents in contrast to the neuroprotective variant carbamyl-erythropoietin (CEPO)

    No full text
    The haematopoietic hormone erythropoietin (EPO) has neuroprotective properties and is currently being explored for treatment of stroke and other neurological disorders. Short-term, high-dose treatment with EPO seems to improve neurological function of stroke patients but may be associated with increased thrombotic risk, whereas alternative non-erythropoietic neuroprotective derivatives of EPO, such as carbamylated EPO (CEPO), may be devoid of such side-effects.We investigated the effects of short-term, high-dose treatment with EPO and CEPO on platelet function and haemostasis in healthy mice and rats. Animals received three daily doses of EPO or CEPO (50 μg/kg), and blood was compared with respect to alterations in haematology and platelet reactivity. In rats, treatment with EPO increased the haematocrit to >50% and the mean platelet volume by 37%,while CEPO had no effect on these parameters.Platelets from EPO-treated rats showed an increased sensitivity to thrombin receptor agonist peptides and elevated plasma levels of soluble P-selectin (sP-selectin) were found in treated mice. Further indicators of platelet hyperreactivity in EPO, but not CEPO-treated animals, were significantly increased aggregatory responses to collagen in whole blood and platelet-rich plasma (PRP).The increased platelet reactivity was paralleled by a decreased bleeding time after tail transection in rats. Samples from EPO-treated rats showed an attenuated response to ADP in whole blood aggregometry and thrombelastography (TEG) platelet mapping but not in apyrase-treated PRP, suggesting involvement of ADP receptor desensitization. These findings suggest that while EPO affects various aspects of platelet function, CEPO is devoid of such effects
    corecore