2,706 research outputs found

    Foliar abscisic acid content unterlies genotypic variation in stomatal responsiveness after growth at high relative air humidity

    Get PDF
    Background and Aims Stomata formed at high relative air humidity (RH) respond less to abscisic acid (ABA), an effect that varies widely between cultivars. This study tested the hypotheses that this genotypic variation in stomatal responsiveness originates from differential impairment in intermediates of the ABA signalling pathway during closure and differences in leaf ABA concentration during growth.Methods Stomatal anatomical features and stomatal responsiveness to desiccation, feeding with ABA, three transduction elements of its signalling pathway (H2O2, NO, Ca2+) and elicitors of these elements were determined in four rose cultivars grown at moderate (60 %) and high (90 %) RH. Leaf ABA concentration was assessed throughout the photoperiod and following mild desiccation (10 % leaf weight loss).Key Results Stomatal responsiveness to desiccation and ABA feeding was little affected by high RH in two cultivars, whereas it was considerably attenuated in two other cultivars (thus termed sensitive). Leaf ABA concentration was lower in plants grown at high RH, an effect that was more pronounced in the sensitive cultivars. Mild desiccation triggered an increase in leaf ABA concentration and equalized differences between leaves grown at moderate and high RH. High RH impaired stomatal responses to all transduction elements, but cultivar differences were not observed.ConclusionsHigh RH resulted in decreased leaf ABA concentration during growth as a result of lack of water deficit, since desiccation induced ABA accumulation. Sensitive cultivars underwent a larger decrease in leaf ABA concentration rather than having a higher ABA concentration threshold for inducing stomatal functioning. However, cultivar differences in stomatal closure following ABA feeding were not apparent in response to H2O2 and downstream elements, indicating that signalling events prior to H2O2 generation are involved in the observed genotypic variation

    Modelling and simulation of VSC-HVDC connection for offshore wind power plants

    Get PDF
    Several large offshore wind power plants (WPP) are planned in the seas around Europe. VSC-HVDC is a suitable means of integrating such large and distant offshore WPP which need long submarine cable transmission to the onshore grid. Recent trend is to use large wind turbine generators with full scale converters to achieve an optimal operation over a wide speed range. The offshore grid then becomes very much different from the conventional power system grid, in the sense that it is connected to power electronic converters only. A model of the wind power plant with VSC-HVDC connection is developed in PSCAD for time-domain dynamic simulation. This paper presents the modelling and simulation of such a system. A single line to ground fault has been simulated and fault currents for the grounded and ungrounded offshore grid system is obtained through simulation and then compared.Postprint (published version

    Structure and deformation of the Kermadec forearc in response to subduction of the Pacific oceanic plate

    Get PDF
    The Tonga-Kermadec forearc is deforming in response to on-going subduction of the Pacific Plate beneath the Indo-Australian Plate. Previous research has focussed on the structural development of the forearc where large bathymetric features such as the Hikurangi Plateau and Louisville Ridge seamount chain are being subducted. Consequently, knowledge of the ‘background’ forearc in regions of normal plate convergence is limited. We report on an ∼250-km-long multichannel seismic reflection profile that was shot perpendicular to the Tonga-Kermadec trench at ∼28°S to determine the lateral and temporal variations in the structure, stratigraphy and deformation of the Kermadec forearc resulting solely from Pacific Plate subduction. Interpretation of the seismic profile, in conjunction with regional swath bathymetry data, shows that the Pacific Plate exhibits horst and graben structures that accommodate bending-induced extensional stresses, generated as the trenchward dip of the crust increases. Trench infill is also much thicker than expected at 1 km which, we propose, results from increased sediment flux into and along the trench. Pervasive normal faulting of the mid-trench slope most likely accommodates the majority of the observed forearc extension in response to basal subduction erosion, and a structural high is located between the mid- and upper-trench slopes. We interpret this high as representing a dense and most likely structurally robust region of crust lying beneath this region. Sediment of the upper-trench slope documents depositional hiatuses and on-going uplift of the arc. Strong along-arc currents appear to erode the Kermadec volcanic arc and distribute this sediment to the surrounding basins, while currents over the forearc redistribute deposits as sediment waves. Minor uplift of the transitional Kermadec forearc, observed just to the north of the profile, appears to relate to an underlying structural trend as well as subduction of the Louisville Ridge seamount chain 250 km to the north. Relative uplift of the Kermadec arc is observed from changes in the tilt of upper-trench slope deposits and extensional faulting of the basement immediately surrounding the Louisville Ridge

    A finite loop space not rationally equivalent to a compact Lie group

    Full text link
    We construct a connected finite loop space of rank 66 and dimension 1254 whose rational cohomology is not isomorphic as a graded vector space to the rational cohomology of any compact Lie group, hence providing a counterexample to a classical conjecture. Aided by machine calculation we verify that our counterexample is minimal, i.e., that any finite loop space of rank less than 66 is in fact rationally equivalent to a compact Lie group, extending the classical known bound of 5.Comment: 8 page

    Microduplications encompassing the Sonic hedgehog limb enhancer ZRS are associated with Haas-type polysyndactyly and Laurin-Sandrow syndrome

    Get PDF
    Laurin-Sandrow syndrome (LSS) is a rare autosomal dominant disorder characterized by polysyndactyly of hands and/or feet, mirror image duplication of the feet, nasal defects, and loss of identity between fibula and tibia. The genetic basis of LSS is currently unknown. LSS shows phenotypic overlap with Haas-type polysyndactyly (HTS) regarding the digital phenotype. Here we report on five unrelated families with overlapping microduplications encompassing the Sonic hedgehog (SHH) limb enhancer ZPA regulatory sequence (ZRS) on chromosome 7q36. Clinically, the patients show polysyndactyly phenotypes and various types of lower limb malformations ranging from syndactyly to mirror image polydactyly with duplications of the fibulae. We show that larger duplications of the ZRS region (>80 kb) are associated with HTS, whereas smaller duplications (<80 kb) result in the LSS phenotype. On the basis of our data, the latter can be clearly distinguished from HTS by the presence of mirror image polysyndactyly of the feet with duplication of the fibula. Our results expand the clinical phenotype of the ZRS-associated syndromes and suggest that smaller duplications (<80 kb) are associated with a more severe phenotype. In addition, we show that these small microduplications within the ZRS region are the underlying genetic cause of Laurin-Sandrow syndrome
    corecore