30 research outputs found
Safety and EEG data quality of concurrent high-density EEG and high-speed fMRI at 3 Tesla
Concurrent EEG and fMRI is increasingly used to characterize the spatial-temporal dynamics of brain activity. However, most studies to date have been limited to conventional echo-planar imaging (EPI). There is considerable interest in integrating recently developed high-speed fMRI methods with high-density EEG to increase temporal resolution and sensitivity for task-based and resting state fMRI, and for detecting interictal spikes in epilepsy. In the present study using concurrent high-density EEG and recently developed high-speed fMRI methods, we investigate safety of radiofrequency (RF) related heating, the effect of EEG on cortical signal-to-noise ratio (SNR) in fMRI, and assess EEG data quality.The study compared EPI, multi-echo EPI, multi-band EPI and multi-slab echo-volumar imaging pulse sequences, using clinical 3 Tesla MR scanners from two different vendors that were equipped with 64- and 256-channel MR-compatible EEG systems, respectively, and receive only array head coils. Data were collected in 11 healthy controls (3 males, age range 18-70 years) and 13 patients with epilepsy (8 males, age range 21-67 years). Three of the healthy controls were scanned with the 256-channel EEG system, the other subjects were scanned with the 64-channel EEG system. Scalp surface temperature, SNR in occipital cortex and head movement were measured with and without the EEG cap. The degree of artifacts and the ability to identify background activity was assessed by visual analysis by a trained expert in the 64 channel EEG data (7 healthy controls, 13 patients).RF induced heating at the surface of the EEG electrodes during a 30-minute scan period with stable temperature prior to scanning did not exceed 1.0° C with either EEG system and any of the pulse sequences used in this study. There was no significant decrease in cortical SNR due to the presence of the EEG cap (p > 0.05). No significant differences in the visually analyzed EEG data quality were found between EEG recorded during high-speed fMRI and during conventional EPI (p = 0.78). Residual ballistocardiographic artifacts resulted in 58% of EEG data being rated as poor quality.This study demonstrates that high-density EEG can be safely implemented in conjunction with high-speed fMRI and that high-speed fMRI does not adversely affect EEG data quality. However, the deterioration of the EEG quality due to residual ballistocardiographic artifacts remains a significant constraint for routine clinical applications of concurrent EEG-fMRI
Assessing the performance of a commercial multisensory sleep tracker.
Wearable sleep technology allows for a less intruding sleep assessment than PSG, especially in long-term sleep monitoring. Though such devices are less accurate than PSG, sleep trackers may still provide valuable information. This study aimed to validate a commercial sleep tracker, Garmin Vivosmart 4 (GV4), against polysomnography (PSG) and to evaluate intra-device reliability (GV4 vs. GV4). Eighteen able-bodied adults (13 females, M = 56.1 ± 12.0 years) with no self-reported sleep disorders were simultaneously sleep monitored by GV4 and PSG for one night while intra-device reliability was monitored in one participant for 23 consecutive nights. Intra-device agreement was considered sufficient (observed agreement = 0.85 ± 0.13, Cohen's kappa = 0.68 ± 0.24). GV4 detected sleep with high accuracy (0.90) and sensitivity (0.98) but low specificity (0.28). Cohen's kappa was calculated for sleep/wake detection (0.33) and sleep stage detection (0.20). GV4 significantly underestimated time awake (p = 0.001) including wake after sleep onset (WASO) (p = 0.001), and overestimated light sleep (p = 0.045) and total sleep time (TST) (p = 0.001) (paired t-test). Sleep onset and sleep end differed insignificantly from PSG values. Our results suggest that GV4 is not able to reliably describe sleep architecture but may allow for detection of changes in sleep onset, sleep end, and TST (ICC ≥ 0.825) in longitudinally followed groups. Still, generalizations are difficult due to our sample limitations
Detection of Paroxysms in Long-Term, Single-Channel EEG-Monitoring of Patients with Typical Absence Seizures
Absence seizures are associated with generalized 2.5-5 Hz spike-wave discharges in the EEG. Rarely are patients, parents or physicians aware of duration or incidence of seizures. Six patients were monitored with a portable EEG-device over four times 24 hours to evaluate how easily outpatients are monitored and how well an automatic seizure detection algorithm can identify the absences. Based on patient-specific modeling, we achieved a sensitivity of 98.4% with only 0.23 false detections per hour. This yields a clinically satisfying performance with a positive predictive value of 87.1%. Portable EEG-recorders identifying paroxystic events in epilepsy outpatients are apromising tool for patients and physicians dealing with absence epilepsy. Albeit the small size of the EEG-device, some children still complained about the obtrusive nature of the device. We aim at developing less obtrusive though still very efficient devices e.g. hidden in the ear canal or below the skin