39 research outputs found

    Thermokarst lake monitoring on the Bykovsky Peninsula using high-resolution remote sensing data

    Get PDF
    Thermokarst lakes are a characteristic element of arctic permafrost regions and an indicator for their rapid landscape changes. Assessing their dynamics contributes to the understanding of driving processes of change, to the evaluation of impacts on landscape characteristics as well as to the estimation of the impact on the permafrost-related carbon budget. Monitoring thermokarst lake dynamics on the Bykovsky Peninsula, consisting of ice-rich Yedoma deposits, using high resolution remote sensing imagery from 1951 to 2016, revealed a long-term tendency towards lake drainage. Approximately 17% of the 1951 lake area was lost due to coastal erosion or the development of drainage networks. In parallel, coastal erosion driven land loss amounts to 2.3% of the peninsula. We find process interconnections between coastal erosion and lake change, as well as lake change dependency on land elevation in a developed alas-yedoma thermokarst relief

    Elevation Change Detection for Quantification of Extensive Permafrost Thaw Subsidence in East Siberian Coastal Lowlands

    Get PDF
    Permanently frozen ground in the Arctic is being destabilized by continuing permafrost degradation, an indicator of climate change in the northern high latitudes. Accelerated coastal erosion due to sea ice reduction and an increased intensity of ground settlement through ground ice melt caused by rising summer air temperatures result in widespread geomorphological activity. The objective of our study is to analyze time series of repeat terrestrial laser scanning (rLiDAR) for quantification of extensive land surface lowering through thaw subsidence, which is the main unknown in terms of recent landscape development in the vast but neglected coastal lowlands of the East Siberian Arctic. These in-situ data provide the basis for calibration and validation of large scale surface change assessments using very high resolution space-borne elevation data with high precision. Complementing our surveys, we conducted botanical mapping. This allows us to relate elevation differences to specific surface conditions and enhances our capabilities to extrapolate our local observations to larger areas through land-cover classifications of multispectral remote sensing data such as Sentinel-2. Additionally, highly detailed digital elevation models (DEMs) with sub-metre accuracy have been photogrammetrically derived from satellite stereo data. These DEMs contain valuable terrain height information for 3D change detection, in case of DEMs representing the state of a study area at different points in time. The results show that elevation differences are almost always negative. When calculated as rates over time, land surface lowering in the ground-ice-rich Siberian coastal lowlands permafrost amounts to 3-10 cm per year

    A Third of Organic Carbon Is Mineral Bound in Permafrost Sediments Exposed by the World's Largest Thaw Slump, Batagay, Siberia

    Get PDF
    Organic carbon (OC) in permafrost interacts with the mineral fraction of soil and sediments, representing < 1% to ~80% of the total OC pool. Quantifying the nature and controls of mineral-OC interactions is therefore crucial for realistic assessments of permafrost-carbon-climate feedbacks, especially in ice-rich regions facing rapid thaw and the development of thermo-erosion landforms. Here, we analyzed sediment samples from the Batagay megaslump in East Siberia, and we present total element concentrations , mineralogy, and mineral-OC interactions in its different stratigraphic units. Our findings indicate that up to 34 ± 8% of the OC pool interacts with mineral surfaces or elements. Interglacial deposits exhibit enhanced OC-mineral interactions, where OC has undergone greater microbial transformation and has likely low degradability. We provide a first-order estimate of ~12,000 tons of OC mobilized annually downslope of the headwall (i.e., the approximate mass of 30 large aircrafts), with a maximum of 38% interacting with OC via complexation with metals or associations to poorly crystalline iron oxides. These data imply that over one-third of the OC exposed by the slump is not readily available for mineralization, potentially leading to prolonged OC residence time in soil and sediments under stable physicochemical conditions

    The cryostratigraphy of the Yedoma cliff of Sobo-Sise Island (Lena delta) reveals permafrost dynamics in the central Laptev Sea coastal region during the last 52 kyr

    Get PDF
    The present study examines the formation history and cryolithological properties of the late-Pleistocene Yedoma Ice Complex (IC) and its Holocene cover in the eastern Lena delta on Sobo-Sise Island. The sedimentary sequence was continuously sampled at 0.5 m resolution at a vertical Yedoma cliff starting from 24.2 m above river level (a.r.l.). The sequence differentiates into three cryostratigraphic units: Unit A, dated from ca. 52 to 28 cal kyr BP; Unit B, dated from ca. 28 to 15 cal kyr BP; Unit C, dated from ca. 7 to 0 cal kyr BP. Three chronologic gaps in the record are striking. The hiatus during the interstadial marine isotope stage (MIS) 3 (36–29 cal kyr BP) as well as during stadial MIS 2 (20–17 cal kyr BP) might be related to fluvial erosion and/or changed discharge patterns of the Lena river caused by repeated outburst floods from the glacial Lake Vitim in southern Siberia along the Lena river valley towards the Arctic Ocean. The hiatus during the MIS 2–1 transition (15–7 cal kyr BP) is a commonly observed feature in permafrost chronologies due to intense thermokarst activity of the deglacial period. The chronologic gaps of the Sobo-Sise Yedoma record are similarly found at two neighbouring Yedoma IC sites on Bykovsky Peninsula and Kurungnakh-Sise Island and are most likely of regional importance. The three cryostratigraphic units of the Sobo-Sise Yedoma exhibit distinct signatures in properties of their clastic, organic, and ice components. Higher permafrost aggradation rates of 1 m kyr−1 with higher organic-matter (OM) stocks (29 ± 15 kg C m−3, 2.2 ± 1.0 kg N m−3; Unit A) and mainly coarse silt are found for the interstadial MIS 3 if compared to the stadial MIS 2 with 0.7 m kyr−1 permafrost aggradation, lower OM stocks (14 ± 8 kg C m−3, 1.4 ± 0.4 kg N m−3; Unit B), and pronounced peaks in the coarse-silt and medium-sand fractions. Geochemical signatures of intra-sedimental ice reflect the differences in summer evaporation and moisture regime by higher ion content and less depleted ratios of stable δ18O and stable δD isotopes but lower deuterium excess (d) values during interstadial MIS 3 if compared to stadial MIS 2. The δ18O and δD composition of MIS 3 and MIS 2 ice wedges shows characteristic well-depleted values and low d values, while MIS 1 ice wedges have elevated mean d values between 11 ‰ and 15 ‰ and surprisingly low δ18O and δD values. Hence, the isotopic difference between late-Pleistocene and Holocene ice wedges is more pronounced in d than in δ values. The present study of the permafrost exposed at the Sobo-Sise Yedoma cliff provides a comprehensive cryostratigraphic inventory, insights into permafrost aggradation, and degradation over the last approximately 52 kyr as well as their climatic and morphodynamic controls on the regional scale of the central Laptev Sea coastal region in NE Siberia

    Modern rates of thermal denudation and thermal abrasion on western Kolguev Island

    Get PDF
    Destruction mechanisms and dynamics of the Arctic coast, also in the western sector of the Russian Arctic, are studied in detail, including the use of remote sensing data. However, data on thermal abrasion and thermo denudation of Kolguev island is quite limited. Some estimates were presented in article of M.A.Velikotsky (1998). Estimation of thermos denudation rates near the Sauchiha river mouth for the period 1948-2002 years was done by the authors earlier (Kizyakov& Perednya, 2003). To obtain data about the modern (after 2002) shoreline retreat rates and growth of thermal cirque a high resolution remote sensing data were involved in our research. Part of the western coast of the Kolguev island was inspected in field work conducted on 2002 by ECI SB RAS, together with VNIIOkeangeologia. The object of research was the part of coast, including a group of three coastal thermal cirques, located 3.5 km south of the Sauchiha river mouth. In 2012, within the framework of the project ‘Geoportal of MSU’ operational satellite imaging was done on Kolguev island by satellite FORMOSAT-2. High resolution satellite imagery provides ample opportunities for visual interpretation of coastal landforms. Aerial photographs (1948 and 1968), surveying materials (2002), high-resolution satellite images (2009 and 2012) became basis to study the dynamics of the coast and thermal cirques in the key area. For key area were calculated: retreat rates of the edge of the coastal terraces and thermal cirques for the periods 1948-1968, 1968-2002, 2002-2009, 2009-2012; retreat rates of the foot of the coastal terrace for the periods 2002-2009, 2009-2012; volume of the material enters the coastal zone by the thermal abrasion for one linear km of a coast (Kizyakov et al., 2013). Average long-term rates of retreat of the coastal terrace during 1948-2012 varied from 0.7 to 2.4 m/year; 2002-2012 varied from 1.7 to 2.4 m/year. Identified rates are distinctive for the part of coast from the mouth of Krivaya river to the curve of coastline near the mouth of the Gusinaya river - a length is 60.5 km. These rates are in 1.1-1.5 times lower than average rates of retreat of thermal cirque edges which are connected with melting of massive ice deposits. Averaged growth rates of the thermal cirques in 1948-2002 was 2.4 m/year; in 2002-2012 was - 2.6 m/year. The maximum growth rate on some sections in 2009-2012 were 14.5-15.1 m/year. These rates are the largest for the previously recorded in the Western sector of the Russian Arctic. The cause of the abnormally high rates is an increase the annual amount of positive air temperatures, which in 2011-2012 was 1.4-1.5 times higher than the long-term average. The determined rates of the development of thermal cirque can be extended to the north from the key area (near the Sauchiha river mouth) to the Gusinaya river mouth with total length of 32.3 km. The next plans on studying the coastal dynamics on Kolguev Island - using additional satellite images for the purposes of: detailization of interannual dynamics through the analysis of more short time span series of satellite images, definition of variations of the coastal destruction rates on the Western and Northern coasts. References: Velikotsky M.A. Characteristics of modern coastal dynamics of the Kolguev Island // Dynamics of the Russian Arctic coasts, Moscow, MSU – 1989 – P.93- 101 (In Russian) Kizyakov A.I., Perednya D.D. Destruction of coasts on the Yugorsky Peninsula and on Kolguev Island (Russia) // Permafrost: Abstr. of the 8th Intern. Conf. (Zurich, Switzerland, 21–25 July 2003). Zurich, Switzerland – 2003 – P. 79–80. Kizyakov A.I., Zimin M.V., Leibman M.O., Pravikova N.V. Monitoring the rate of thermal denudation and thermal abrasion on the western coast of Kolguev Island using high resolution satellite images // Earth Cryosphere (Kriosfera Zemli). – 2013, XVII, No. 4 – P. 15-25 (In Russian)

    Rapid Fluvio-Thermal Erosion of a Yedoma Permafrost Cliff in the Lena River Delta

    Get PDF
    The degradation of ice-rich permafrost deposits has the potential to release large amounts of previously freeze-locked carbon (C) and nitrogen (N) with local implications, such as affecting riverine and near-shore ecosystems, but also global impacts such as the release of greenhouse gases into the atmosphere. Here, we study the rapid erosion of the up to 27.7 m high and 1,660 m long Sobo-Sise yedoma cliff in the Lena River Delta using a remote sensing-based time-series analysis covering 53 years and calculate the mean annual sediment as well as C and N release into the Lena River. We find that the Sobo-Sise yedoma cliff, which exposes ice-rich late Pleistocene to Holocene deposits, had a mean long-term (1965–2018) erosion rate of 9.1 m yr–1 with locally and temporally varying rates of up to 22.3 m yr–1. These rates are among the highest measured erosion rates for permafrost coastal and river shoreline stretches. The fluvio-thermal erosion led to the release of substantial amounts of C (soil organic carbon and dissolved organic carbon) and N to the river system. On average, currently at least 5.2 × 106 kg organic C and 0.4 × 106 kg N were eroded annually (2015–2018) into the Lena River. The observed sediment and organic matter erosion was persistent over the observation period also due to the specific configuration of river flow direction and cliff shore orientation. Our observations highlight the importance to further study rapid fluvio-thermal erosion processes in the permafrost region, also because our study shows increasing erosion rates at Sobo-Sise Cliff in the most recent investigated time periods. The organic C and N transport from land to river and eventually to the Arctic Ocean from this and similar settings may have severe implications on the biogeochemistry and ecology of the near-shore zone of the Laptev Sea as well as for turnover and rapid release of old C and N to the atmosphere

    Landforms and degradation pattern of the Batagay thaw slump, Northeastern Siberia

    Get PDF
    Thaw slumps are clear indicators of rapid permafrost degradation. They form preferentially in near-surface ice-rich permafrost of northern high latitudes after initial thermal disturbance by the subsequent interplay of thermal (thawing of frozen deposits and melting of ice) and mechanical (slumping and erosion) processes. The largest known thaw slump on Earth – the Batagay megaslump – has been identified in sloping terrain on the Yana Upland in northern Yakutia. Its initiation began in the 1980s, with a current area of >0.8 km2. It continues to grow and has headwall retreat rates of up to 15 m per year. While various satellite remote sensing studies of the Batagay thaw slump have been undertaken, on-site studies characterizing internal landforms, terrain changes, and geomorphic processes have not yet been conducted. To fill this knowledge gap and to enhance our understanding of the dynamics of very large thaw slumps, our study employs on-site observations and detailed permafrost sampling combined with unoccupied aerial vehicle data from 2019. The latter were used to generate an orthomosaic, a digital surface model, hypsometric slope profiles and a map of relief types in the thaw slump. Within the Batagay thaw slump, the dynamic relationship between headwall morphology and slump floor is largely determined by the cryolithological structure of the permafrost horizons exposed across the headwall rising up to 55 m above the slump floor. Factors include the thickness and overall high volumetric ground-ice content (up to 87 %) of the cryostratigraphic horizons. Furthermore, the diurnal and seasonal insolation exposure of the headwall perimeter superimposes both thermal denudation activity and meltwater transport of eroded material. Thus, recent degradation patterns are linked to permafrost properties. Therefore, the Batagay thaw slump is not only a window into Earth's past as it reveals ancient permafrost, but its modern dynamics highlight that ongoing rapid permafrost thaw under present Arctic warming is directly influenced by its Quaternary geological and permafrost history
    corecore