104 research outputs found

    Approximate Spin Projection for Broken-Symmetry Method and Its Application

    Get PDF
    A broken-(spin) symmetry (BS) method is now widely used for systems that involve (quasi) degenerated frontier orbitals because of their lower cost of computation. The BS method splits up-spin and down-spin electrons into two different special orbitals, so that a singlet spin state of the degenerate system is expressed as a singlet biradical. In the BS solution, therefore, the spin symmetry is no longer retained. Due to such spin-symmetry breaking, the BS method often suffers from a serious problem called a spin contamination error, so that one must eliminate the error by some kind of projection method. An approximate spin projection (AP) method, which is one of the spin projection procedures, can eliminate the error from the BS solutions by assuming the Heisenberg model and can recover the spin symmetry. In this chapter, we illustrate a theoretical background of the BS and AP methods, followed by some examples of their applications, especially for calculations of the exchange interaction and for the geometry optimizations

    Similarities of artificial photosystems by ruthenium oxo complexes and native water splitting systems.

    Get PDF
    The nature of chemical bonds of ruthenium(Ru)-quinine(Q) complexes, mononuclear [Ru(trpy)(3, 5-t-Bu(2)Q)(OH(2))](ClO(4))(2) (trpy = 2, 2('):6('), 2('')-terpyridine, 3, 5-di-tert-butyl-1, 2-benzoquinone) (1), and binuclear [Ru(2)(btpyan)(3, 6-di-Bu(2)Q)(2)(OH(2))](2+) (btpyan = 1, 8-bis(2, 2('):6('), 2('')-terpyrid-4(')-yl)anthracene, 3, 6-t-Bu(2)Q = 3, 6-di-tert-butyl-1, 2-benzoquinone) (2), has been investigated by broken-symmetry (BS) hybrid density functional (DFT) methods. BS DFT computations for the Ru complexes have elucidated that the closed-shell structure (2b) Ru(II)-Q complex is less stable than the open-shell structure (2bb) consisting of Ru(III) and semiquinone (SQ) radical fragments. These computations have also elucidated eight different electronic and spin structures of tetraradical intermediates that may be generated in the course of water splitting reaction. The Heisenberg spin Hamiltonian model for these species has been derived to elucidate six different effective exchange interactions (J) for four spin systems. Six J values have been determined using total energies of the eight (or seven) BS solutions for different spin configurations. The natural orbital analyses of these BS DFT solutions have also been performed in order to obtain natural orbitals and their occupation numbers, which are useful for the lucid understanding of the nature of chemical bonds of the Ru complexes. Implications of the computational results are discussed in relation to the proposed reaction mechanisms of water splitting reaction in artificial photosynthesis systems and the similarity between artificial and native water splitting systems

    A self-consistent first-principles calculation scheme for correlated electron systems

    Full text link
    A self-consistent calculation scheme for correlated electron systems is created based on the density-functional theory (DFT). Our scheme is a multi-reference DFT (MR-DFT) calculation in which the electron charge density is reproduced by an auxiliary interacting Fermion system. A short-range Hubbard-type interaction is introduced by a rigorous manner with a residual term for the exchange-correlation energy. The Hubbard term is determined uniquely by referencing the density fluctuation at a selected localized orbital. This strategy to obtain an extension of the Kohn-Sham scheme provides a self-consistent electronic structure calculation for the materials design. Introducing an approximation for the residual exchange-correlation energy functional, we have the LDA+U energy functional. Practical self-consistent calculations are exemplified by simulations of Hydrogen systems, i.e. a molecule and a periodic one-dimensional array, which is a proof of existence of the interaction strength U as a continuous function of the local fluctuation and structural parameters of the system.Comment: 23 pages, 8 figures, to appear in J. Phys. Condens. Matte

    Local magnetic structure due to inhomogeneity of interaction in S=1/2 antiferromagnetic chain

    Full text link
    We study the magnetic properties of S=1/2S=1/2 antiferromagnetic Heisenberg chains with inhomogeneity of interaction. Using a quantum Monte Carlo method and an exact diagonalization method, we study bond-impurity effect in the uniform S=1/2S=1/2 chain and also in the bond-alternating chain. Here `bond impurity' means a bond with strength different from those in the bulk or a defect in the alternating order. Local magnetic structures induced by bond impurities are investigated both in the ground state and at finite temperatures, calculating the local magnetization, the local susceptibility and the local field susceptibility. We also investigate the force acting between bond impurities and find the force generally attractive.Comment: 15pages, 34figure

    Switching dynamics between metastable ordered magnetic state and nonmagnetic ground state - A possible mechanism for photoinduced ferromagnetism -

    Full text link
    By studying the dynamics of the metastable magnetization of a statistical mechanical model we propose a switching mechanism of photoinduced magnetization. The equilibrium and nonequilibrium properties of the Blume-Capel (BC) model, which is a typical model exhibiting metastability, are studied by mean field theory and Monte Carlo simulation. We demonstrate reversible changes of magnetization in a sequence of changes of system parameters, which would model the reversible photoinduced magnetization. Implications of the calculated results are discussed in relation to the recent experimental results for prussian blue analogs.Comment: 12 pages, 13 figure
    corecore