74 research outputs found

    Defining Hypo-Methylated Regions of Stem Cell-Specific Promoters in Human iPS Cells Derived from Extra-Embryonic Amnions and Lung Fibroblasts

    Get PDF
    BACKGROUND: Human induced pluripotent stem (iPS) cells are currently used as powerful resources in regenerative medicine. During very early developmental stages, DNA methylation decreases to an overall low level at the blastocyst stage, from which embryonic stem cells are derived. Therefore, pluripotent stem cells, such as ES and iPS cells, are considered to have hypo-methylated status compared to differentiated cells. However, epigenetic mechanisms of "stemness" remain unknown in iPS cells derived from extra-embryonic and embryonic cells. METHODOLOGY/PRINCIPAL FINDINGS: We examined genome-wide DNA methylation (24,949 CpG sites covering 1,3862 genes, mostly selected from promoter regions) with six human iPS cell lines derived from human amniotic cells and fetal lung fibroblasts as well as two human ES cell lines, and eight human differentiated cell lines using Illumina's Infinium HumanMethylation27. A considerable fraction (807 sites) exhibited a distinct difference in the methylation level between the iPS/ES cells and differentiated cells, with 87.6% hyper-methylation seen in iPS/ES cells. However, a limited fraction of CpG sites with hypo-methylation was found in promoters of genes encoding transcription factors. Thus, a group of genes becomes active through a decrease of methylation in their promoters. Twenty-three genes including SOX15, SALL4, TDGF1, PPP1R16B and SOX10 as well as POU5F1 were defined as genes with hypo-methylated SS-DMR (Stem cell-Specific Differentially Methylated Region) and highly expression in iPS/ES cells. CONCLUSIONS/SIGNIFICANCE: We show that DNA methylation profile of human amniotic iPS cells as well as fibroblast iPS cells, and defined the SS-DMRs. Knowledge of epigenetic information across iPS cells derived from different cell types can be used as a signature for "stemness" and may allow us to screen for optimum iPS/ES cells and to validate and monitor iPS/ES cell derivatives for human therapeutic applications

    Fusion partner–specific mutation profiles and KRAS mutations as adverse prognostic factors in MLL-rearranged AML

    Get PDF
    急性骨髄性白血病の予後を予測する新規マーカーを発見 --リスクに応じた適切な治療につながる可能性--. 京都大学プレスリリース. 2020-10-02.Mixed-lineage leukemia (MLL) gene rearrangements are among the most frequent chromosomal abnormalities in acute myeloid leukemia (AML). MLL fusion patterns are associated with the patient’s prognosis; however, their relationship with driver mutations is unclear. We conducted sequence analyses of 338 genes in pediatric patients with MLL-rearranged (MLL-r) AML (n = 56; JPLSG AML-05 study) alongside data from the TARGET study’s pediatric cohorts with MLL-r AML (n = 104), non–MLL-r AML (n = 581), and adult MLL-r AML (n = 81). KRAS mutations were most frequent in pediatric patients with high-risk MLL fusions (MLL-MLLLT10, MLL-MLLT4, and MLL-MLLT1). Pediatric patients with MLL-r AML (n = 160) and a KRAS mutation (KRAS-MT) had a significantly worse prognosis than those without a KRAS mutation (KRAS-WT) (5-year event-free survival [EFS]: 51.8% vs 18.3%, P < .0001; 5-year overall survival [OS]: 67.3% vs 44.3%, P = .003). The adverse prognostic impact of KRAS mutations was confirmed in adult MLL-r AML. KRAS mutations were associated with adverse prognoses in pediatric patients with both high-risk (MLLT10+MLLT4+MLLT1; n = 60) and intermediate-to-low–risk (MLLT3+ELL+others; n = 100) MLL fusions. The prognosis did not differ significantly between patients with non–MLL-r AML with KRAS-WT or KRAS-MT. Multivariate analysis showed the presence of a KRAS mutation to be an independent prognostic factor for EFS (hazard ratio [HR], 2.21; 95% confidence interval [CI], 1.35-3.59; P = .002) and OS (HR, 1.85; 95% CI, 1.01-3.31; P = .045) in MLL-r AML. The mutation is a distinct adverse prognostic factor in MLL-r AML, regardless of risk subgroup, and is potentially useful for accurate treatment stratification. This trial was registered at the UMIN (University Hospital Medical Information Network) Clinical Trials Registry (UMIN-CTR; http://www.umin.ac.jp/ctr/index.htm) as #UMIN000000511

    Rationale and Design of a Prospective, Multicentre, Stop Tyrosine Kinase Inhibitor Trial of Paediatric Patients with Chronic Myeloid Leukaemia with Sustained Complete Molecular Response (STKI-14)

    Get PDF
    Chronic myeloid leukaemia (CML) is a relatively rare disease in children, accounting for 2–3% of all paediatric leukaemia cases. Generally, children with CML can avoid hematopoietic stem cell transplantation and achieve molecular responses with tyrosine kinase inhibitors (TKI). However, CML stem cells are thought to survive in many patients, even after TKI treatment. Many aspects of the toxic effects of prolonged exposure to TKIs during childhood remain unclear, particularly those regarding growth impairment. This lack of clarity underscores the importance of the present clinical trial, which aims to clarify the feasibility of treatment-free remission (TFR) in children following TKI treatment. We aim to examine the long-term out-comes and complications of TKIs before and after cessation to better understand the unknown complications that could arise in adulthood. This trial targets patients who were diagnosed with CML at an age younger than 20 years, were in the chronic or accelerated phase at initial diagnosis and remained in complete molecular remission for at least 2 years after TKI administration. We will examine the utility of TKI cessation and assess the treatment results of patients who resumed TKI therapy after losing a major molecular response. We will also investigate factors related to the feasibility of a TFR after TKI cessation

    EWS/ETS Regulates the Expression of the Dickkopf Family in Ewing Family Tumor Cells

    Get PDF
    BACKGROUND: The Dickkopf (DKK) family comprises a set of proteins that function as regulators of Wnt/beta-catenin signaling and has a crucial role in development. Recent studies have revealed the involvement of this family in tumorigenesis, however their role in tumorigenesis is still remained unclear. METHODOLOGY/PRINCIPAL FINDINGS: We found increased expression of DKK2 but decreased expression of DKK1 in Ewing family tumor (EFT) cells. We showed that EFT-specific EWS/ETS fusion proteins enhance the DKK2 promoter activity, but not DKK1 promoter activity, via ets binding sites (EBSs) in the 5' upstream region. EWS/ETS-mediated transactivation of the promoter was suppressed by the deletion and mutation of EBSs located upstream of the DKK2 gene. Interestingly, the inducible expression of EWS/ETS resulted in the strong induction of DKK2 expression and inhibition of DKK1 expression in human primary mesenchymal progenitor cells that are thought to be a candidate of cell origin of EFT. In addition, using an EFT cell line SK-ES1 cells, we also demonstrated that the expression of DKK1 and DKK2 is mutually exclusive, and the ectopic expression of DKK1, but not DKK2, resulted in the suppression of tumor growth in immuno-deficient mice. CONCLUSIONS/SIGNIFICANCE: Our results suggested that DKK2 could not functionally substitute for DKK1 tumor-suppressive effect in EFT. Given the mutually exclusive expression of DKK1 and DKK2, EWS/ETS regulates the transcription of the DKK family, and the EWS/ETS-mediated DKK2 up-regulation could affect the tumorigenicity of EFT in an indirect manner

    The Partial Duplication of the 5′ Segment of KMT2A Revealed KMT2A-MLLT10 Rearrangement in a Boy with Acute Myeloid Leukemia

    No full text
    The duplication of 5′ segment of KMT2A is a rare molecular event in childhood leukemia, and the influence on prognosis is unknown. Here, we report on a boy who developed acute monocytic leukemia. Fluorescence in situ hybridization revealed the duplication of the 5′ segment with 2 normal alleles at KMT2A which was eventually found to be fused with MLLT10. Chemotherapy promptly induced the first complete remission in the patient at our facility, and the patient remained in first complete remission with negative minimal residual disease at 3.5 years from diagnosis. Our case is similar to two previously reported patients who had partial duplication of the 5′ segment of KMT2A with a KMT2A-MLLT10 rearrangement. Further studies and experience with this cryptic translocation may shed more light on the management of acute myeloid leukemia
    corecore