94 research outputs found
cGAN-based Manga Colorization Using a Single Training Image
The Japanese comic format known as Manga is popular all over the world. It is
traditionally produced in black and white, and colorization is time consuming
and costly. Automatic colorization methods generally rely on greyscale values,
which are not present in manga. Furthermore, due to copyright protection,
colorized manga available for training is scarce. We propose a manga
colorization method based on conditional Generative Adversarial Networks
(cGAN). Unlike previous cGAN approaches that use many hundreds or thousands of
training images, our method requires only a single colorized reference image
for training, avoiding the need of a large dataset. Colorizing manga using
cGANs can produce blurry results with artifacts, and the resolution is limited.
We therefore also propose a method of segmentation and color-correction to
mitigate these issues. The final results are sharp, clear, and in high
resolution, and stay true to the character's original color scheme.Comment: 8 pages, 13 figure
- …