1 research outputs found

    Single-Source, Solvent-Free, Room Temperature Deposition of Black γ-CsSnI<sub>3</sub> Films

    Get PDF
    The presence of a non-optically active polymorph (yellow-phase) competing with the optically active polymorph (black γ\gamma-phase) at room temperature in CsSnI3 and the susceptibility of Sn to oxidation, represent two of the biggest obstacles for the exploitation of CsSnI3 in optoelectronic devices. Here room-temperature single-source in vacuum deposition of smooth black γ\gamma - CsSnI3 thin films is reported. This has been done by fabricating a solid target by completely solvent-free mixing of CsI and SnI2 powders and isostatic pressing. By controlled laser ablation of the solid target on an arbitrary substrate at room temperature, the formation of CsSnI3 thin films with optimal optical properties is demonstrated. The films present a band gap of 1.32 eV, a sharp absorption edge and near-infrared photoluminescence emission. These properties and X-ray diffraction of the thin films confirmed the formation of the orthorhombic (B-γ\gamma) perovskite phase. The thermal stability of the phase was ensured by applying in situ an Al2O3_3 capping layer. This work demonstrates the potential of pulsed laser deposition as a volatility-insensitive single-source growth technique of halide perovskites and represents a critical step forward in the development and future scalability of inorganic lead-free halide perovskites.Comment: Accepted by Advanced Materials Interfaces, 16 pages, 4 figures, and supplemen
    corecore