3 research outputs found

    Role of p53 in Human Cancers

    Get PDF
    TP53 codes tumor protein 53-p53 that controls the cell cycle through binding DNA directly and induces reversible cell-cycle arrest. The protein activates DNA repair genes if mutated DNA will be repaired or activates apoptotosis if the damaged DNA cannot be fixed. Therefore, p53, so-called the “guardian of the genome,” promote cell survival by allowing for DNA repair. However, the tumor-suppressor function of p53 is either lost or gained through mutations in half of the human cancers. In this work, functional perturbation of the p53 mechanism is elaborated at the breast, bladder, liver, brain, lung cancers, and osteosarcoma. Mutation of wild-type p53 not only diminishes tumor suppressor activity but transforms it into an oncogenic structure. Further, malfunction of the TP53 leads accumulation of additional oncogenic mutations in the cell genome. Thus, disruption of TP53 dependent survival pathways promotes cancer progression. This oncogenic TP53 promotes cell survival, prevents cell death through apoptosis, and contributes to the proliferation and metastasis of tumor cells. The purpose of this chapter is to discuss the contribution of mutant p53 to distinct cancer types

    Microglia Mediated Neuroinflammation in Parkinson’s Disease

    No full text
    Parkinson’s Disease (PD) is the second most common neurodegenerative disorder seen, especially in the elderly. Tremor, shaking, movement problems, and difficulty with balance and coordination are among the hallmarks, and dopaminergic neuronal loss in substantia nigra pars compacta of the brain and aggregation of intracellular protein α-synuclein are the pathological characterizations. Neuroinflammation has emerged as an involving mechanism at the initiation and development of PD. It is a complex network of interactions comprising immune and non-immune cells in addition to mediators of the immune response. Microglia, the resident macrophages in the CNS, take on the leading role in regulating neuroinflammation and maintaining homeostasis. Under normal physiological conditions, they exist as “homeostatic” but upon pathological stimuli, they switch to the “reactive state”. Pro-inflammatory (M1) and anti-inflammatory (M2) phenotypes are used to classify microglial activity with each phenotype having its own markers and released mediators. When M1 microglia are persistent, they will contribute to various inflammatory diseases, including neurodegenerative diseases, such as PD. In this review, we focus on the role of microglia mediated neuroinflammation in PD and also signaling pathways, receptors, and mediators involved in the process, presenting the studies that associate microglia-mediated inflammation with PD. A better understanding of this complex network and interactions is important in seeking new therapies for PD and possibly other neurodegenerative diseases

    Neuroprotective effects of Cubebin and Hinokinin lignan fractions of Piper cubeba fruit in Alzheimer’s disease in vitro model

    No full text
    The current research examines the protective effects of the Piper cubeba ethanolic extract and its isolated lignans; Cubebin and Hinokinin fractions against Alzheimer’s Disease (AD) in vitro model
    corecore