188 research outputs found

    Metastable Precursor Structures in Hydrogen-infused Super Duplex Stainless Steel Microstructure – An Operando Diffraction Experiment

    Get PDF
    We report the evolution of metastable precursor structures during hydrogen infusion in the near-surface region of a super duplex stainless steel. Grazing-incidence x-ray diffraction was employed to monitor, operando, the lattice degradation of the austenite and ferrite phases. Electrochemical hydrogen charging resulted in the splitting of the diffraction peaks of the austenite phase, suggesting the evolution of a metastable precursor structure. This may be explained by the formation of quasi-hydrides, which convert back into the austenite parent structure during hydrogen effusion. The ferrite showed less lattice deformation than the austenite and no phase transformation

    A role for CCR4 in development of mature circulating cutaneous T helper memory cell populations

    Get PDF
    Expression of the chemokine receptor CCR4 is strongly associated with trafficking of specialized cutaneous memory T helper (Th) lymphocytes to the skin. However, it is unknown whether CCR4 itself participates in the development of cutaneous Th populations. We have addressed this issue via competitive bone marrow (BM) reconstitution assays; equal numbers of BM cells from CCR4+/+ and CCR4−/− donors were allowed to develop side-by-side within RAG-1−/− hosts. Cells from both donor types developed equally well into B cells, naive CD8 T cells, naive CD4 T cells, interferon-γ+ Th1 cells, and interleukin-4+ Th2 cells. In marked contrast, circulating cutaneous memory Th cells (i.e., E-selectin ligand+ [E-lig+]) were more than fourfold more likely to be derived from CCR4+/+ donors than from CCR4−/− donors. Most of this effect resides within the CD103+ subset of the E-lig+ Th population, in which donor CCR4+/+ cells can outnumber CCR4−/− cells by >12-fold. No similar effect was observed for α4β7+ intestinal memory Th cells or CD103+/E-lig− Th cells. We conclude that CCR4 expression provides a competitive advantage to cutaneous Th cells, either by participating in their development from naive Th cells, or by preferentially maintaining them within the memory population over time

    Exploring Hydride Formation in Stainless Steel Revisits Theory of Hydrogen Embrittlement

    Full text link
    Various mechanisms have been proposed for hydrogen embrittlement, but the causation of hydrogen-induced material degradation has remained unclear. This work shows hydrogen embrittlement due to phase instability (decomposition). In-situ diffraction measurements revealed metastable hydrides formed in stainless steel, typically declared as a non-hydride forming material. Hydride formation is possible by increasing the hydrogen chemical potential during electrochemical charging and low defect formation energy of hydrogen interstitials. Our findings demonstrate that hydrogen-induced material degradation can only be understood if measured in situ and in real-time during the embrittlement process.Comment: 31 Pages, 18 Figures, Preprin

    Stat1 is an inducible transcriptional repressor of neural stem cells self-renewal program during neuroinflammation

    Get PDF
    A central issue in regenerative medicine is understanding the mechanisms that regulate the self-renewal of endogenous stem cells in response to injury and disease. Interferons increase hematopoietic stem cells during infection by activating STAT1, but the mechanisms by which STAT1 regulates intrinsic programs in neural stem cells (NSCs) during neuroinflammation is less known. Here we explored the role of STAT1 on NSC self-renewal. We show that overexpressing Stat1 in NSCs derived from the subventricular zone (SVZ) decreases NSC self-renewal capacity while Stat1 deletion increases NSC self-renewal, neurogenesis, and oligodendrogenesis in isolated NSCs. Importantly, we find upregulation of STAT1 in NSCs in a mouse model of multiple sclerosis (MS) and an increase in pathological T cells expressing IFN-γ rather than interleukin 17 (IL-17) in the cerebrospinal fluid of affected mice. We find IFN-γ is superior to IL-17 in reducing proliferation and precipitating an abnormal NSC phenotype featuring increased STAT1 phosphorylation and Stat1 and p16ink4a gene expression. Notably, Stat1–/– NSCs were resistant to the effect of IFN-γ. Lastly, we identified a Stat1-dependent gene expression profile associated with an increase in the Sox9 transcription factor, a regulator of self-renewal. Stat1 binds and transcriptionally represses Sox9 in a transcriptional luciferase assay. We conclude that Stat1 serves as an inducible checkpoint for NSC self-renewal that is upregulated during chronic brain inflammation leading to decreased self-renewal. As such, Stat1 may be a potential target to modulate for next generation therapies to prevent progression and loss of repair function in NSCs/neural progenitors in MS

    Stat1 is an inducible transcriptional repressor of neural stem cells self-renewal program during neuroinflammation

    Get PDF
    A central issue in regenerative medicine is understanding the mechanisms that regulate the self-renewal of endogenous stem cells in response to injury and disease. Interferons increase hematopoietic stem cells during infection by activating STAT1, but the mechanisms by which STAT1 regulates intrinsic programs in neural stem cells (NSCs) during neuroinflammation is less known. Here we explored the role of STAT1 on NSC self-renewal. We show that overexpressing Stat1 in NSCs derived from the subventricular zone (SVZ) decreases NSC self-renewal capacity while Stat1 deletion increases NSC self-renewal, neurogenesis, and oligodendrogenesis in isolated NSCs. Importantly, we find upregulation of STAT1 in NSCs in a mouse model of multiple sclerosis (MS) and an increase in pathological T cells expressing IFN-γ rather than interleukin 17 (IL-17) in the cerebrospinal fluid of affected mice. We find IFN-γ is superior to IL-17 in reducing proliferation and precipitating an abnormal NSC phenotype featuring increased STAT1 phosphorylation and Stat1 and p16(ink4a) gene expression. Notably, Stat1(-/-) NSCs were resistant to the effect of IFN-γ. Lastly, we identified a Stat1-dependent gene expression profile associated with an increase in the Sox9 transcription factor, a regulator of self-renewal. Stat1 binds and transcriptionally represses Sox9 in a transcriptional luciferase assay. We conclude that Stat1 serves as an inducible checkpoint for NSC self-renewal that is upregulated during chronic brain inflammation leading to decreased self-renewal. As such, Stat1 may be a potential target to modulate for next generation therapies to prevent progression and loss of repair function in NSCs/neural progenitors in MS

    Biological effects of sodium phenylbutyrate and taurursodiol in Alzheimer's disease

    Get PDF
    INTRODUCTION: Sodium phenylbutyrate and taurursodiol (PB and TURSO) is hypothesized to mitigate endoplasmic reticulum stress and mitochondrial dysfunction, two of many mechanisms implicated in Alzheimer's disease (AD) pathophysiology. METHODS: The first‐in‐indication phase 2a PEGASUS trial was designed to gain insight into PB and TURSO effects on mechanistic targets of engagement and disease biology in AD. The primary clinical efficacy outcome was a global statistical test combining three endpoints relevant to disease trajectory (cognition [Mild/Moderate Alzheimer's Disease Composite Score], function [Functional Activities Questionnaire], and total hippocampal volume on magnetic resonance imaging). Secondary clinical outcomes included various cognitive, functional, and neuropsychiatric assessments. Cerebrospinal fluid (CSF) biomarkers spanning multiple pathophysiological pathways in AD were evaluated in participants with both baseline and Week 24 samples (exploratory outcome). RESULTS: PEGASUS enrolled 95 participants (intent‐to‐treat [ITT] cohort); cognitive assessments indicated significantly greater baseline cognitive impairment in the PB and TURSO (n = 51) versus placebo (n = 44) group. Clinical efficacy outcomes did not significantly differ between treatment groups in the ITT cohort. CSF interleukin‐15 increased from baseline to Week 24 within the placebo group (n = 34). In the PB and TURSO group (n = 33), reductions were observed in core AD biomarkers phosphorylated tau‐181 (p‐tau181) and total tau; synaptic and neuronal degeneration biomarkers neurogranin and fatty acid binding protein‐3 (FABP3); and gliosis biomarker chitinase 3‐like protein 1 (YKL‐40), while the oxidative stress marker 8‐hydroxy‐2‐deoxyguanosine (8‐OHdG) increased. Between‐group differences were observed for the Aβ42/40 ratio, p‐tau181, total tau, neurogranin, FABP3, YKL‐40, interleukin‐15, and 8‐OHdG. Additional neurodegeneration, inflammation, and metabolic biomarkers showed no differences between groups. DISCUSSION: While between‐group differences in clinical outcomes were not observed, most likely due to the small sample size and relatively short treatment duration, exploratory biomarker analyses suggested that PB and TURSO engages multiple pathophysiologic pathways in AD. Highlights: Proteostasis and mitochondrial stress play key roles in Alzheimer's disease (AD). Sodium phenylbutyrate and taurursodiol (PB and TURSO) targets these mechanisms. The PEGASUS trial was designed to assess PB and TURSO effects on biologic AD targets. PB and TURSO reduced exploratory biomarkers of AD and neurodegeneration. Supports further clinical development of PB and TURSO in neurodegenerative diseases

    Peripheral accumulation of newly produced T and B lymphocytes in natalizumab-treated multiple sclerosis patients

    Get PDF
    The anti-α4 monoclonal antibody natalizumab inhibits lymphocyte extravasation into the central nervous system and increases peripheral T and B lymphocytes in multiple sclerosis patients. To investigate whether the lymphocyte accumulation was due to a higher lymphocyte production, an altered homeostasis, or a differential transmigration of lymphocyte subsets through endothelia, T-cell receptor excision circles and kappa-deleting recombination excision circles were quantified before and after treatment, T-cell receptor repertoire was analyzed by spectratyping, and T- and B-lymphocyte subset migration was studied using transwell coated with vascular and lymphatic endothelial cells. We found that the number of newly produced T and B lymphocytes is increased because of a high release and of a low propensity of naïve subsets to migrate across endothelial cells. In some patients this resulted in an enlargement of T-cell heterogeneity. Because new lymphocyte production ensures the integrity of immune surveillance, its quantification could be used to monitor natalizumab therapy safety
    corecore