17 research outputs found
Ignition of Deflagration and Detonation Ahead of the Flame due to Radiative Preheating of Suspended Micro Particles
We study a flame propagating in the gaseous combustible mixture with
suspended inert particles. The gas is assumed to be transparent for the
radiation emitted by the combustion products, while particles absorb and
re-emit the radiation. Thermal radiation heats the particles, which in turn
transfer the heat to the surrounding gaseous mixture by means of heat
conduction, so that the gas temperature lags that of the particles. We consider
different scenarios depending on the spatial distribution of the particles,
their size and the number density. In the case of uniform distribution of the
particles the radiation causes a modest increase of the temperature ahead of
the flame and the corresponding increase of the flame velocity. The effects of
radiation preheating is stronger for a flame with smaller normal velocity. In
the case of non-uniform distribution of the particles, such that the particles
number density is smaller just ahead of the flame and increases in the distant
region ahead of the flame, the preheating caused by the thermal radiation may
trigger additional independent source of ignition. This scenario requires the
formation of a temperature gradient with the maximum temperature sufficient for
ignition in the region of denser particles cloud ahead of the advancing flame.
Depending on the steepness of the temperature gradient formed in the unburned
mixture, either deflagration or detonation can be initiated via the Zeldovich's
gradient mechanism. The ignition and the resulting combustion regimes depend on
the temperature profile which is formed in effect of radiation absorption and
gas-dynamic expansion. In the case of coal dust flames propagating through a
layered dust cloud the effect of radiation heat transfer can result in the
propagation of combustion wave with velocity up to 1000m/s and can be a
plausible explanation of the origin of dust explosion in coal mines.Comment: 45 pages, 14 figures. Accepted for publication Combustion and Flame
29 June 201
Numerical Investigation of Hydrogen-Air Mixtures Ignition near Lean Flammability Limit
Abstract The 0D and 1D aproaches for lean flammability limit determination are presented for hydrogen-air mixture. Results, obtained with the use of two methods revealed the consistency of 1D approach rather than 0D. It is shown that the ignition of lean mixtures is unstable towards gasdynamic effects evolving on the scales of ignition zone. The other part of the paper investigates the concentration limits of flame propagation and demonstrates that the addition of the spatial domain with non-uniform concentration distribution to the uniform one could expand the concentration limits of flame propagation