5 research outputs found

    Maternal Low-Level Lead Exposure and Fetal Growth

    Get PDF
    Background Limited epidemiologic studies have examined the association between maternal low-level lead exposure [blood lead (PbB) \u3c 10 μg/dL] and fetal growth. Objective We examined whether maternal low-level lead exposure is associated with decreased fetal growth. Methods We linked New York State Heavy Metals Registry records of women who had PbB measurements with birth certificates to identify 43,288 mother–infant pairs in upstate New York in a retrospective cohort study from 2003 through 2005. We used multiple linear regression with fractional polynomials and logistic regression to relate birth weight, preterm delivery, and small for gestational age to PbB levels, adjusting for potential confounders. We used a closed-test procedure to identify the best fractional polynomials for PbB among 44 combinations. Results We found a statistically significant association between PbB (square root transformed) and birth weight. Relative to 0 μg/dL, PbBs of 5 and 10 μg/dL were associated with an average of 61-g and 87-g decrease in birth weight, respectively. The adjusted odds ratio for PbBs between 3.1 and 9.9 μg/dL (highest quartile) was 1.04 [95% confidence interval (CI), 0.89–1.22] for preterm delivery and 1.07 (95% CI, 0.93–1.23) for small for gestational age, relative to PbBs ≤ 1 μg/dL (lowest quartile). No clear dose–response trends were evident when all of the quartiles were assessed. Conclusions Low-level PbB was associated with a small risk of decreased birth weight with a supralinear dose–response relationship, but was not related to preterm birth or small for gestational age. The results have important implications regarding maternal PbB

    What is the prevalence of and trend in opioid use disorder in the United States from 2010 to 2019? Using multiplier approaches to estimate prevalence for an unknown population size.

    No full text
    Opioid-related overdose deaths have increased since 2010 in the U.S., but information on trends in opioid use disorder (OUD) prevalence is limited due to unreliable data. Multiplier methods are a classical epidemiological technique to estimate prevalence when direct estimation is infeasible or unreliable. We used two different multiplier approaches to estimate OUD prevalence from 2010 to 2019. First, we estimated OUD in National Survey on Drug Use and Health (NSDUH), and based on existing capture-recapture studies, multiplied prevalence by 4.5x. Second, we estimated the probability of drug poisoning death among people with OUD (Meta-analysis indicates 0.52/100,000), and divided the number of drug poisoning deaths in the US by this probability. Estimates were weighted to account for increase in drug-related mortality in recent years due to fentanyl. Estimated OUD prevalence was lowest when estimated in NSDUH with no multiplier, and highest when estimated from vital statistics data without adjustment. Consistent findings emerged with two methods: NSDUH data with multiplier correction, and vital statistics data with multiplier and adjustment. From these two methods, OUD prevalence increased from 2010 to 2014; then stabilized and slightly declined annually (survey data with multiplier, highest prevalence of 4.0% in 2015; death data with a multiplier and correction, highest prevalence of 2.35% in 2016). The number of US adolescent and adult individuals with OUD in 2019 was estimated between 6.7–7.6 million. When multipliers and corrections are used, OUD may have stabilized or slightly declined after 2015. Nevertheless, it remains highly prevalent, affecting 6–7 million US adolescents and adults
    corecore