6,765 research outputs found
Wave propagation on a random lattice
Motivated by phenomenological questions in quantum gravity, we consider the
propagation of a scalar field on a random lattice. We describe a procedure to
calculate the dispersion relation for the field by taking a limit of a periodic
lattice. We use this to calculate the lowest order coefficients of the
dispersion relation for a specific one-dimensional model.Comment: 13 pages, 3 figures. v3: Some minor changes and clarifications.
Virtually identical with the version published in Physical Review
Functionalization of BN Honeycomb structure by Adsorption and Substitution of Foreign atoms
We carried out first-principles calculations within Density Functional Theory
to investigate the structural, electronic and magnetic properties of
boron-nitride (BN) honeycomb structure functionalized by adatom adsorption, as
well as by the substitution of foreign atoms for B and N atoms. For periodic
high density coverage, most of transition metal atoms and some of group
3A, 4A, and 6A elements are adsorbed with significant binding energy and modify
the electronic structure of bare BN monolayer. While bare BN monolayer is
nonmagnetic, wide band gap semiconductor, at high coverage of specific adatoms
it can achieve magnetic metallic, even half-metallic ground states. At low
coverage, the bands associated with adsorbed atoms are flat and the band
structure of parent BN is not affected significantly. Therefore, adatoms and
substitution of foreign atoms at low coverage are taken to be the
representative of impurity atoms yielding localized states in the band gap and
resonance states in the band continua. Notably, the substitution of C for B and
N yield donor and acceptor like magnetic states in the band gap. Localized
impurity states occurring in the gap give rise to interesting properties for
electronic and optical application of the single layer BN honeycomb structure.Comment: 10 pages, 6 figures, 4 table
Heavy Fermion Quantum Criticality
During the last few years, investigations of Rare-Earth materials have made
clear that not only the heavy fermion phase in these systems provides
interesting physics, but the quantum criticality where such a phase dies
exhibits novel phase transition physics not fully understood. Moreover,
attempts to study the critical point numerically face the infamous fermion sign
problem, which limits their accuracy. Effective action techniques and
Callan-Symanzik equations have been very popular in high energy physics, where
they enjoy a good record of success. Yet, they have been little exploited for
fermionic systems in condensed matter physics. In this work, we apply the RG
effective action and Callan-Symanzik techiques to the heavy fermion problem. We
write for the first time the effective action describing the low energy physics
of the system. The f-fermions are replaced by a dynamical scalar field whose
nonzero expected value corresponds to the heavy fermion phase. This removes the
fermion sign problem, making the effective action amenable to numerical studies
as the effective theory is bosonic. Renormalization group studies of the
effective action can be performed to extract approximations to nonperturbative
effects at the transition. By performing one-loop renormalizations, resummed
via Callan-Symanzik methods, we describe the heavy fermion criticality and
predict the heavy fermion critical dynamical susceptibility and critical
specific heat. The specific heat coefficient exponent we obtain (0.39) is in
excellent agreement with the experimental result at low temperatures (0.4).Comment: 5 pages. In the replacement, the numerical value for the specific
heat coefficient exponent has been included explicitly in decimal form, and
has been compared with the experimental result
Photoacoustic wave propagating from normal into superconductive phases in Pb single crystals
Photoacoustic (PA) wave has been examined in a superconductor of the first
kind, Pb single crystal. The PA wave is induced by optical excitation of
electronic state and propagates from normal into superconductive phases below
T. It is clearly shown by wavelet analysis that the measured PA wave
includes two different components. The high-frequency component is
MHz-ultrasonic and the relative low-frequency one is induced by thermal wave.
The latter is observed in a similar manner irrespective of T. On the
other hand, the MHz-frequency component is obviously enhanced below T. The behavior is reproduced by the change of attenuation of longitudinal
ultrasonic wave and is consistent with BCS theory.Comment: 5 pages, 5 figures (fig.3 is colored), RevTeX4; the text is modifie
Dynamical instability and loss of p-band bosons in optical lattices
We study how the bosonic atoms on the excited p-band of an optical lattice
are coupled to the lowest s-band and the 2nd excited d-band. We find that in
some parameter regimes the atom-atom interactions can cause a dynamical
instability of the p-band atoms towards decay to the s- and d-bands.
Furthermore, even when dynamical instability is not expected s- and d-bands can
become substantially populated.Comment: 7 figures, minor changes to the earlier versio
Magnetoelectric Response of the Time-Reversal Invariant Helical Metal
We derive compact analytical expressions for the coupled spin-charge
susceptibility of a clean helical metal at the surface of a three dimensional
topological insulator (TI). These expressions lead to unconventional
non-collinear RKKY interactions between two impurity magnetic moments placed on
the surface of a TI, and predict the generation of electric currents by
time-dependent magnetic moments. We determine the influence of gate and bias
voltages on the interlayer exchange coupling between two single-domain
ferromagnetic monolayers deposited on top of a TI.Comment: 4 pages, 2 figures; submitted to Phys. Rev. B R
Magnetic moment and magnetic anisotropy of linear and zigzag 4{\it d} and 5{\it d} transition metal nanowires: First-principles calculations
An extensive {\it ab initio} study of the physical properties of both linear
and zigzag atomic chains of all 4 and 5 transition metals (TM) within the
GGA by using the accurate PAW method, has been carried out. All the TM linear
chains are found to be unstable against the corresponding zigzag structures.
All the TM chains, except Nb, Ag and La, have a stable (or metastable) magnetic
state in either the linear or zigzag or both structures. Magnetic states appear
also in the sufficiently stretched Nb and La linear chains and in the largely
compressed Y and La chains. The spin magnetic moments in the Mo, Tc, Ru, Rh, W,
Re chains could be large (1.0 /atom). Structural transformation
from the linear to zigzag chains could suppress the magnetism already in the
linear chain, induce the magnetism in the zigzag structure, and also cause a
change of the magnetic state (ferromagnetic to antiferroamgetic or vice verse).
The calculations including the spin-orbit coupling reveal that the orbital
moments in the Zr, Tc, Ru, Rh, Pd, Hf, Ta, W, Re, Os, Ir and Pt chains could be
rather large (0.1 /atom). Importantly, large magnetic anisotropy
energy (1.0 meV/atom) is found in most of the magnetic TM chains,
suggesting that these nanowires could have fascinating applications in
ultrahigh density magnetic memories and hard disks. In particular, giant
magnetic anisotropy energy (10.0 meV/atom) could appear in the Ru, Re,
Rh, and Ir chains. Furthermore, the magnetic anisotropy energy in several
elongated linear chains could be as large as 40.0 meV/atom. A
spin-reorientation transition occurs in the Ru, Ir, Ta, Zr, La and Zr, Ru, La,
Ta and Ir linear chains when they are elongated. Remarkably, all the 5 as
well as Tc and Pd chains show the colossal magnetic anisotropy (i.e., it is
impossible to rotate magnetization into certain directions). Finally, the
electronic band structure and density of states of the nanowires have also been
calculated in order to understand the electronic origin of the large magnetic
anisotropy and orbital magnetic moment as well as to estimate the conduction
electron spin polarization.Comment: To appear in Phys. Rev.
Hopping and clustering of oxygen vacancies in SrTiO3 by anelastic relaxation
The complex elastic compliance s11(w,T) of SrTiO3-d has been measured as a
function of the O deficiency d < 0.01. The two main relaxation peaks in the
absorption are identified with hopping of isolated O vacancies over a barrier
of 0.60 eV and reorientation of pairs of vacancies involving a barrier of 1 eV.
The pair binding energy is ~0.2 eV and indications for additional clustering,
possibly into chains, is found already at d ~0.004. The anistropic component of
the elastic dipole of an O vacancy is Deltalambda = 0.026.Comment: 4 pages, 4 figures, submitted to Phys. Rev. Let
Fast mode of rotating atoms in one-dimensional lattice rings
We study the rotation of atoms in one-dimensional lattice rings. In
particular, the "fast mode", where the ground state atoms rotate faster than
the stirring rotating the atoms, is studied both analytically and numerically.
The conditions for the transition to the fast mode are found to be very
different from that in continuum rings. We argue that these transition
frequencies remain unchanged for bosonic condensates described in a mean field.
We show that Fermionic interaction and filling factor have a significant effect
on the transition to the fast mode, and Pauli principle may suppress it
altogether.Comment: 4 pages, 5 figure
Supersolid phases of dipolar bosons in optical lattices with a staggered flux
We present the theoretical mean-field zero-temperature phase diagram of a
Bose-Einstein condensate (BEC) with dipolar interactions loaded into an optical
lattice with a staggered flux. Apart from uniform superfluid, checkerboard
supersolid and striped supersolid phases, we identify several supersolid phases
with staggered vortices, which can be seen as combinations of supersolid phases
found in earlier work on dipolar BECs and a staggered-vortex phase found for
bosons in optical lattices with staggered flux. By allowing for different
phases and densities on each of the four sites of the elementary plaquette,
more complex phase patterns are found.Comment: 11 pages; added references, minor changes in tex
- …