8 research outputs found

    The Exciting Realities and Possibilities of iPS-Derived Cardiomyocytes

    No full text
    Induced pluripotent stem cells (iPSCs) have become a prevalent topic after their discovery, advertised as an ethical alternative to embryonic stem cells (ESCs). Due to their ability to differentiate into several kinds of cells, including cardiomyocytes, researchers quickly realized the potential for differentiated cardiomyocytes to be used in the treatment of heart failure, a research area with few alternatives. This paper discusses the differentiation process for human iPSC-derived cardiomyocytes and the possible applications of said cells while answering some questions regarding ethical issues

    Clinical Application for Tissue Engineering Focused on Materials

    No full text
    Cardiovascular-related medical conditions remain a significant cause of death worldwide despite the advent of tissue engineering research more than half a century ago. Although autologous tissue is still the preferred treatment, donor tissue is limited, and there remains a need for tissue-engineered vascular grafts (TEVGs). The production of extensive vascular tissue (>1 cm3) in vitro meets the clinical needs of tissue grafts and biological research applications. The use of TEVGs in human patients remains limited due to issues related to thrombogenesis and stenosis. In addition to the advancement of simple manufacturing methods, the shift of attention to the combination of synthetic polymers and bio-derived materials and cell sources has enabled synergistic combinations of vascular tissue development. This review details the selection of biomaterials, cell sources and relevant clinical trials related to large diameter vascular grafts. Finally, we will discuss the remaining challenges in the tissue engineering field resulting from complex requirements by covering both basic and clinical research from the perspective of material design

    The Application of Porous Scaffolds for Cardiovascular Tissues

    No full text
    As the number of arteriosclerotic diseases continues to increase, much improvement is still needed with treatments for cardiovascular diseases. This is mainly due to the limitations of currently existing treatment options, including the limited number of donor organs available or the long-term durability of the artificial organs. Therefore, tissue engineering has attracted significant attention as a tissue regeneration therapy in this area. Porous scaffolds are one of the effective methods for tissue engineering. However, it could be better, and its effectiveness varies depending on the tissue application. This paper will address the challenges presented by various materials and their combinations. We will also describe some of the latest methods for tissue engineering

    The Application of Porous Scaffolds for Cardiovascular Tissues

    No full text
    As the number of arteriosclerotic diseases continues to increase, much improvement is still needed with treatments for cardiovascular diseases. This is mainly due to the limitations of currently existing treatment options, including the limited number of donor organs available or the long-term durability of the artificial organs. Therefore, tissue engineering has attracted significant attention as a tissue regeneration therapy in this area. Porous scaffolds are one of the effective methods for tissue engineering. However, it could be better, and its effectiveness varies depending on the tissue application. This paper will address the challenges presented by various materials and their combinations. We will also describe some of the latest methods for tissue engineering

    2-Cl-C.OXT-A stimulates contraction through the suppression of phosphodiesterase activity in human induced pluripotent stem cell-derived cardiac organoids.

    No full text
    Background2-Cl-C.OXT-A (COA-Cl) is a novel synthesized adenosine analog that activates Sphingosine-1-phosphate 1 receptor (S1P1R) and combines with the adenosine A1 receptor (A1R) in G proteins and was shown to enhance angiogenesis and improve the brain function in rat stroke models. However, the role of COA-Cl in hearts remains unclear. COA-Cl, which has a similar structure to xanthine derivatives, has the potential to suppress phosphodiesterase (PDE), which is an important factor involved in the beating of heart muscle.Methods and resultsCardiac organoids with fibroblasts, human induced pluripotent stem cell-derived cardiac myocytes (hiPSC-CMs), and hiPSC-derived endothelial cells (hiPSC-ECs) were cultured until they started beating. The beating and contraction of organoids were observed before and after the application of COA-Cl. COA-Cl significantly increased the beating rate and fractional area change in organoids. To elucidate the mechanism underlying these effects of COA-Cl on cardiac myocytes, pure hiPSC-CM spheroids were evaluated in the presence/absence of Suramin (antagonist of A1R). The effects of COA-Cl, SEW2871 (direct stimulator of S1P1R), two positive inotropes (Isoproterenol [ISO] and Forskolin [FSK]), and negative inotrope (Propranolol [PRP]) on spheroids were assessed based on the beating rates and cAMP levels. COA-Cl stimulated the beating rates about 1.5-fold compared with ISO and FSK, while PRP suppressed the beating rate. However, no marked changes were observed with SEW2871. COA-Cl, ISO, and FSK increased the cAMP level. In contrast, the level of cAMP did not change with PRP or SEW2871 treatment. The results were the same in the presence of Suramin as absence. Furthermore, an enzyme analysis showed that COA-Cl suppressed the PDE activity by half.ConclusionsCOA-Cl, which has neovascularization effects, suppressed PDE and increased the contraction of cardiac organoids, independent of S1P1R and A1R. These findings suggest that COA-Cl may be useful as an inotropic agent for promoting angiogenesis in the future

    Advances in Cardiac Tissue Engineering

    No full text
    Tissue engineering has paved the way for the development of artificial human cardiac muscle patches (hCMPs) and cardiac tissue analogs, especially for treating Myocardial infarction (MI), often by increasing its regenerative abilities. Low engraftment rates, insufficient clinical application scalability, and the creation of a functional vascular system remain obstacles to hCMP implementation in clinical settings. This paper will address some of these challenges, present a broad variety of heart cell types and sources that can be applied to hCMP biomanufacturing, and describe some new innovative methods for engineering such treatments. It is also important to note the injection/transplantation of cells in cardiac tissue engineering

    [Retrosternal Giant Aortic Aneurysm;Report of Two Cases].

    No full text
    This is a 2-case report of successful aortic repair surgery for the retrosternal giant aortic aneurysm. Our surgical strategy is deep hypothermia and left ventricular( LV) unloading under cardiopulmonary bypass before approaching to the aortic aneurysm in case of possible catastrophic bleeding. Case 1, a 64-year-old woman, had a retrosternal pseudoaneurysm (80 mm) at the distal anastomosis of a Dacron graft used to replace the ascending aorta 7 years before. An LV vent tube was cannulated via the right upper pulmonary vein through an inferior T-shaped ministernotomy. Case 2, an 86-year-old woman, had a retrosternal chronic aortic dissecting aneurysm (66 mm). An LV vent cannula was inserted via the LV apex through a left minithoracotomy. Arch replacement and ascending aorta replacement were performed in Case 1 and 2, respectively, without cardiac, neurological, or any other complications. This strategy is safe and useful in a case with complex aortic disease
    corecore