639 research outputs found
A recipe for postfledging survival in great tits Parus major: be large and be early (but not too much)
Survival of juveniles during the postfledging period can be markedly low, which may have major consequences on avian population dynamics. Knowing which factors operating during the nesting phase affect postfledging survival is crucial to understand avian breeding strategies. We aimed to obtain a robust set of predictors of postfledging local survival using the great tit (Parus major) as a model species. We used markârecapture models to analyze the effect of hatching date, temperatures experienced during the nestling period, fledging size and body mass on first-year postfledging survival probability of great tit juveniles. We used data from 5192 nestlings of first clutches ringed between 1993 and 2010. Mean first-year postfledging survival probability was 15.2%, and it was lower for smaller individuals, as well as for those born in either very early or late broods. Our results stress the importance of choosing an optimum hatching period, and raising large chicks to increase first-year local survival probability in the studied population.SecretarĂa de Estado de InvestigaciĂłn, Desarrollo e InnovaciĂłn (Grant/Award Number: âCGL2013-48001-C2-1-Pâ)Peer reviewe
Depth concentrations of deuterium ions implanted into some pure metals and alloys
Pure metals (Cu, Ti, Zr, V, Pd) and diluted Pd-alloys (Pd-Ag, Pd-Pt, Pd-Ru,
Pd-Rh) were implanted by 25 keV deuterium ions at fluences in the range
(1.2{\div}2.3)x1022 D+/m2. The post-treatment depth distributions of deuterium
ions were measured 10 days and three months after the implantation using
Elastic Recoil Detection Analysis (ERDA) and Rutherford Backscattering (RBS).
Comparison of the obtained results allowed to make conclusions about relative
stability of deuterium and hydrogen gases in pure metals and diluted Pd alloys.
Very high diffusion rates of implanted deuterium ions from V and Pd pure metals
and Pd alloys were observed. Small-angle X-ray scattering revealed formation of
nanosized defects in implanted corundum and titanium.Comment: 12 pages, 9 figure
Methionine Sulfoxide Reductases Are Essential for Virulence of Salmonella Typhimurium
Production of reactive oxygen species represents a fundamental innate defense against microbes in a diversity of host organisms. Oxidative stress, amongst others, converts peptidyl and free methionine to a mixture of methionine-S- (Met-S-SO) and methionine-R-sulfoxides (Met-R-SO). To cope with such oxidative damage, methionine sulfoxide reductases MsrA and MsrB are known to reduce MetSOs, the former being specific for the S-form and the latter being specific for the R-form. However, at present the role of methionine sulfoxide reductases in the pathogenesis of intracellular bacterial pathogens has not been fully detailed. Here we show that deletion of msrA in the facultative intracellular pathogen Salmonella (S.) enterica serovar Typhimurium increased susceptibility to exogenous H2O2, and reduced bacterial replication inside activated macrophages, and in mice. In contrast, a ÎmsrB mutant showed the wild type phenotype. Recombinant MsrA was active against free and peptidyl Met-S-SO, whereas recombinant MsrB was only weakly active and specific for peptidyl Met-R-SO. This raised the question of whether an additional Met-R-SO reductase could play a role in the oxidative stress response of S. Typhimurium. MsrC is a methionine sulfoxide reductase previously shown to be specific for free Met-R-SO in Escherichia (E.) coli. We tested a ÎmsrC single mutant and a ÎmsrBÎmsrC double mutant under various stress conditions, and found that MsrC is essential for survival of S. Typhimurium following exposure to H2O2, as well as for growth in macrophages, and in mice. Hence, this study demonstrates that all three methionine sulfoxide reductases, MsrA, MsrB and MsrC, facilitate growth of a canonical intracellular pathogen during infection. Interestingly MsrC is specific for the repair of free methionine sulfoxide, pointing to an important role of this pathway in the oxidative stress response of Salmonella Typhimurium
Charged-particle multiplicity fluctuations in PbâPb collisions at âsNN =Â 2.76Â TeV
Measurements of event-by-event fluctuations of charged-particle multiplicities in PbâPb collisions at âsNN = 2.76 TeV using the ALICE detector at the CERN Large Hadron Collider (LHC) are presented in the pseudorapidity range |η|<0.8 and transverse momentum 0.2<pT<2.0 GeV/c. The amplitude of the fluctuations is expressed in terms of the variance normalized by the mean of the multiplicity distribution. The η and pT dependences of the fluctuations and their evolution with respect to collision centrality are investigated. The multiplicity fluctuations tend to decrease from peripheral to central collisions. The results are compared to those obtained from HIJING and AMPT Monte Carlo event generators as well as to experimental data at lower collision energies. Additionally, the measured multiplicity fluctuations are discussed in the context of the isothermal compressibility of the high-density strongly-interacting system formed in central PbâPb collisions.publishedVersio
Polarization of Î and ÎÂŻ Hyperons along the Beam Direction in Pb-Pb Collisions at âsNN = 5.02 TeV
The polarization of the Lambda and (Lambda) over bar hyperons along the beam (z) direction, P-z, has been measured in Pb-Pb collisions at root s(NN) = 5.02 TeV recorded with ALICE at the Large Hadron Collider (LHC). The main contribution to P-z comes from elliptic flow-induced vorticity and can be characterized by the second Fourier sine coefficient P-z,P-s2 = < P-z sin(2 phi - 2 Psi(2))>, where phi is the hyperon azimuthal emission angle and Psi(2) is the elliptic flow plane angle. We report the measurement of P-z,P-s2 for different collision centralities and in the 30%-50% centrality interval as a function of the hyperon transverse momentum and rapidity. The P-z,P-s2 is positive similarly as measured by the STAR Collaboration in Au-Au collisions at root s(NN) = 200 GeV, with somewhat smaller amplitude in the semicentral collisions. This is the first experimental evidence of a nonzero hyperon P-z in Pb-Pb collisions at the LHC. The comparison of the measured P-z,P-s2 with the hydrodynamic model calculations shows sensitivity to the competing contributions from thermal and the recently found shear-induced vorticity, as well as to whether the polarization is acquired at the quark-gluon plasma or the hadronic phase
Characterizing the initial conditions of heavy-ion collisions at the LHC with mean transverse momentum and anisotropic flow correlations
Correlations between mean transverse momentum and anisotropic flow coefficients or are measured as a function of centrality in PbâPb and XeâXe collisions at sqrt(sNN) = 5.02 TeV and 5.44 TeV, respectively, with ALICE. In addition, the recently proposed higher-order correlation between [pt], v2, and v3 is measured for the first time, which shows an anticorrelation for the presented centrality ranges. These measurements are compared with hydrodynamic calculations using IP-Glasma and TRENTO initial-state shapes, the former based on the Color Glass Condensate effective theory with gluon saturation, and the latter a parameterized model with nucleons as the relevant degrees of freedom. The data are better described by the IP-Glasma rather than the TRENTO based calculations. In particular, Trajectum and JETSCAPE predictions, both based on the TRENTO initial state model but with different parameter settings, fail to describe the measurements. As the correlations between [pt] and vn are mainly driven by the correlations of the size and the shape of the system in the initial state, these new studies pave a novel way to characterize the initial state and help pin down the uncertainty of the extracted properties of the quarkâgluon plasma recreated in relativistic heavy-ion collisions
Measurement of the production of (anti)nuclei in pâPb collisions at sNN=8.16TeV
Measurements of (anti)proton, (anti)deuteron, and (anti)3He production in the rapidity range -1 > y > 0 as a function of the transverse momentum and event multiplicity in pâPb collisions at a center-of-mass energy per nucleonânucleon pair sqrt(sNN) = 8.16 TeV are presented. The coalescence parameters B2 and B3, measured as a function of the transverse momentum per nucleon and of the mean charged-particle multiplicity density, confirm a smooth evolution from low to high multiplicity across different collision systems and energies. The ratios between (anti)deuteron and (anti)3He yields and those of (anti)protons are also reported as a function of the mean charged-particle multiplicity density. A comparison with the predictions of the statistical hadronization and coalescence models for different collision systems and center-of-mass energies favors the coalescence description for the deuteron-to-proton yield ratio with respect to the canonical statistical model
K0SK0S and K0SK± femtoscopy in pp collisions at âs = 5.02 and 13 TeV
Femtoscopic correlations with the particle pair combinations (KSKS0)-K-0 and (KSK +/-)-K-0 are studied in pp collisions at root s= 5.02 and 13 TeV by the ALICE experiment. At both energies, boson source parameters are extracted for both pair combinations, by fitting models based on Gaussian size distributions of the sources, to the measured two-particle correlation functions. The interaction model used for the (KSKS0)-K-0 analysis includes quantum statistics and strong final-state interactions through the f(0) (980) and a(0) (980) resonances. The model used for the (KSK +/-)-K-0 analysis includes only the final-state interaction through the a(0) resonance. Source parameters extracted in the present work are compared with published values from pp collisions at root s = 7 TeV and the different pair combinations are found to be consistent. From the observation that the strength of the (KSKS0)-K-0 correlations is significantly greater than the strength of the (KSK +/-)-K-0 correlations, the new results are compatible with the a(0) resonance being a tetraquark state of the form (q(1), (q(2)) over bar, s, (s) over bar), where q(1) and q(2) are uor d quarks. (C) 2022 European Organization for Nuclear Research, ALICE. Published by Elsevier B.V
Study of very forward energy and its correlation with particle production at midrapidity in pp and p-Pb collisions at the LHC
The energy deposited at very forward rapidities (very forward energy) is a powerful tool for characterising proton fragmentation in pp and p-Pb collisions. The correlation of very forward energy with particle production at midrapidity provides direct insights into the initial stages and the subsequent evolution of the collision. Furthermore, the correlation with the production of particles with large transverse momenta at midrapidity provides information complementary to the measurements of the underlying event, which are usually interpreted in the framework of models implementing centrality-dependent multiple parton interactions.
Results about very forward energy, measured by the ALICE zero degree calorimeters (ZDCs), and its dependence on the activity measured at midrapidity in pp collisions at âs = 13 TeV and in p-Pb collisions at âsNN = 8.16 TeV are discussed. The measurements performed in pp collisions are compared with the expectations of three hadronic interaction event generators: PYTHIA 6 (Perugia 2011 tune), PYTHIA 8 (Monash tune), and EPOS LHC. These results provide new constraints on the validity of models in describing the beam remnants at very forward rapidities, where perturbative QCD cannot be used
Inclusive J / Ï production at midrapidity in pp collisions at âs=13 TeV
open1030siAcknowledgements
We wish to thank Mathias Butenschoen, Vincent Cheung, Bernd A. Kniehl, Artem V. Lipatov, Yan-Qing Ma, Raju Venugopalan and Ramona Vogt for kindly providing their calculations. The ALICE Collaboration would like to thank all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collaboration gratefully acknowledges the resources and support provided by all Grid centres and the Worldwide LHC Computing Grid (WLCG) collaboration. The ALICE Collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: A. I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation (ANSL), State Committee of Science and World Federation of Scientists (WFS), Armenia; Austrian Academy of Sciences, Austrian Science Fund (FWF): [M 2467-N36] and Nationalstiftung fĂŒr Forschung, Technologie und Entwicklung, Austria; Ministry of Communications and High Technologies, National Nuclear Research Center, Azerbaijan; Conselho Nacional de Desenvolvimento CientĂfico e TecnolĂłgico (CNPq), Financiadora de Estudos e Projetos (Finep), Fundação de Amparo Ă Pesquisa do Estado de SĂŁo Paulo (FAPESP) and Universidade Federal do Rio Grande do Sul (UFRGS), Brazil; Ministry of Education of China (MOEC) , Ministry of Science and Technology of China (MSTC) and National Natural Science Foundation of China (NSFC), China; Ministry of Science and Education and Croatian Science Foundation, Croatia; Centro de Aplicaciones TecnolĂłgicas y Desarrollo Nuclear (CEADEN), CubaenergĂa, Cuba; Ministry of Education, Youth and Sports of the Czech Republic, Czech Republic; The Danish Council for Independent Research | Natural Sciences, the VILLUM FONDEN and Danish National Research Foundation (DNRF), Denmark; Helsinki Institute of Physics (HIP), Finland; Commissariat Ă lâEnergie Atomique (CEA) and Institut National de Physique NuclĂ©aire et de Physique des Particules (IN2P3) and Centre National de la Recherche Scientifique (CNRS), France; Bundesministerium fĂŒr Bildung und Forschung (BMBF) and GSI Helmholtzzentrum fĂŒr Schwerionenforschung GmbH, Germany; General Secretariat for Research and Technology, Ministry of Education, Research and Religions, Greece; National Research, Development and Innovation Office, Hungary; Department of Atomic Energy Government of India (DAE), Department of Science and Technology, Government of India (DST), University Grants Commission, Government of India (UGC) and Council of Scientific and Industrial Research (CSIR), India; Indonesian Institute of Science, Indonesia; Istituto Nazionale di Fisica Nucleare (INFN), Italy; Institute for Innovative Science and Technology , Nagasaki Institute of Applied Science (IIST), Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) and Japan Society for the Promotion of Science (JSPS) KAKENHI, Japan; Consejo Nacional de Ciencia (CONACYT) y TecnologĂa, through Fondo de CooperaciĂłn Internacional en Ciencia y TecnologĂa (FONCICYT) and DirecciĂłn General de Asuntos del Personal Academico (DGAPA), Mexico; Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; The Research Council of Norway, Norway; Commission on Science and Technology for Sustainable Development in the South (COMSATS), Pakistan; Pontificia Universidad CatĂłlica del PerĂș, Peru; Ministry of Education and Science, National Science Centre and WUT ID-UB, Poland; Korea Institute of Science and Technology Information and National Research Foundation of Korea (NRF), Republic of Korea; Ministry of Education and Scientific Research, Institute of Atomic Physics and Ministry of Research and Innovation and Institute of Atomic Physics, Romania; Joint Institute for Nuclear Research (JINR), Ministry of Education and Science of the Russian Federation, National Research Centre Kurchatov Institute, Russian Science Foundation and Russian Foundation for Basic Research, Russia; Ministry of Education, Science, Research and Sport of the Slovak Republic, Slovakia; National Research Foundation of South Africa, South Africa; Swedish Research Council (VR) and Knut and Alice Wallenberg Foundation (KAW), Sweden; European Organization for Nuclear Research, Switzerland; Suranaree University of Technology (SUT), National Science and Technology Development Agency (NSDTA) and Office of the Higher Education Commission under NRU project of Thailand, Thailand; Turkish Energy, Nuclear and Mineral Research Agency (TENMAK), Turkey; National Academy of Sciences of Ukraine, Ukraine; Science and Technology Facilities Council (STFC), United Kingdom; National Science Foundation of the United States of America (NSF) and United States Department of Energy, Office of Nuclear Physics (DOE NP), United States of America. In addition, individual groups and members have received support from Horizon 2020 and Marie SkĆodowska Curie Actions, European Union.We report on the inclusive J / Ï production cross section measured at the CERN Large Hadron Collider in protonâproton collisions at a center-of-mass energy s=13 TeV. The J / Ï mesons are reconstructed in the e +e - decay channel and the measurements are performed at midrapidity (| y| < 0.9) in the transverse-momentum interval 0 < pT< 40 GeV/c, using a minimum-bias data sample corresponding to an integrated luminosity Lint=32.2nb-1 and an Electromagnetic Calorimeter triggered data sample with Lint=8.3pb-1. The pT-integrated J / Ï production cross section at midrapidity, computed using the minimum-bias data sample, is dÏ/dy|y=0=8.97±0.24(stat)±0.48(syst)±0.15(lumi)ÎŒb. An approximate logarithmic dependence with the collision energy is suggested by these results and available world data, in agreement with model predictions. The integrated and pT-differential measurements are compared with measurements in pp collisions at lower energies and with several recent phenomenological calculations based on the non-relativistic QCD and Color Evaporation models.openAcharya S.; Adamova D.; Adler A.; Aglieri Rinella G.; Agnello M.; Agrawal N.; Ahammed Z.; Ahmad S.; Ahn S.U.; Ahuja I.; Akbar Z.; Akindinov A.; Al-Turany M.; Alam S.N.; Aleksandrov D.; Alessandro B.; Alfanda H.M.; Alfaro Molina R.; Ali B.; Ali Y.; Alici A.; Alizadehvandchali N.; Alkin A.; Alme J.; Alt T.; Altenkamper L.; Altsybeev I.; Anaam M.N.; Andrei C.; Andreou D.; Andronic A.; Angeletti M.; Anguelov V.; Antinori F.; Antonioli P.; Anuj C.; Apadula N.; Aphecetche L.; Appelshauser H.; Arcelli S.; Arnaldi R.; Arsene I.C.; Arslandok M.; Augustinus A.; Averbeck R.; Aziz S.; Azmi M.D.; Badala A.; Baek Y.W.; Bai X.; Bailhache R.; Bailung Y.; Bala R.; Balbino A.; Baldisseri A.; Balis B.; Ball M.; Banerjee D.; Barbera R.; Barioglio L.; Barlou M.; Barnafoldi G.G.; Barnby L.S.; Barret V.; Bartels C.; Barth K.; Bartsch E.; Baruffaldi F.; Bastid N.; Basu S.; Batigne G.; Batyunya B.; Bauri D.; Alba J.L.B.; Bearden I.G.; Beattie C.; Belikov I.; Bell Hechavarria A.D.C.; Bellini F.; Bellwied R.; Belokurova S.; Belyaev V.; Bencedi G.; Beole S.; Bercuci A.; Berdnikov Y.; Berdnikova A.; Bergmann L.; Besoiu M.G.; Betev L.; Bhaduri P.P.; Bhasin A.; Bhat I.R.; Bhat M.A.; Bhattacharjee B.; Bhattacharya P.; Bianchi L.; Bianchi N.; Bielcik J.; Bielcikova J.; Biernat J.; Bilandzic A.; Biro G.; Biswas S.; Blair J.T.; Blau D.; Blidaru M.B.; Blume C.; Boca G.; Bock F.; Bogdanov A.; Boi S.; Bok J.; Boldizsar L.; Bolozdynya A.; Bombara M.; Bond P.M.; Bonomi G.; Borel H.; Borissov A.; Bossi H.; Botta E.; Bratrud L.; Braun-Munzinger P.; Bregant M.; Broz M.; Bruno G.E.; Buckland M.D.; Budnikov D.; Buesching H.; Bufalino S.; Bugnon O.; Buhler P.; Buthelezi Z.; Butt J.B.; Bylinkin A.; Bysiak S.A.; Cai M.; Caines H.; Caliva A.; Calvo Villar E.; Camacho J.M.M.; Camacho R.S.; Camerini P.; Canedo F.D.M.; Carnesecchi F.; Caron R.; Castillo Castellanos J.; Casula E.A.R.; Catalano F.; Ceballos Sanchez C.; Chakraborty P.; Chandra S.; Chapeland S.; Chartier M.; Chattopadhyay S.; Chattopadhyay S.; Chauvin A.; Chavez T.G.; Cheng T.; Cheshkov C.; Cheynis B.; Chibante Barroso V.; Chinellato D.D.; Cho S.; Chochula P.; Christakoglou P.; Christensen C.H.; Christiansen P.; Chujo T.; Cicalo C.; Cifarelli L.; Cindolo F.; Ciupek M.R.; Clai G.; Cleymans J.; Colamaria F.; Colburn J.S.; Colella D.; Collu A.; Colocci M.; Concas M.; Conesa Balbastre G.; Conesa del Valle Z.; Contin G.; Contreras J.G.; Coquet M.L.; Cormier T.M.; Cortese P.; Cosentino M.R.; Costa F.; Costanza S.; Crochet P.; Cruz-Torres R.; Cuautle E.; Cui P.; Cunqueiro L.; Dainese A.; Danisch M.C.; Danu A.; Das I.; Das P.; Das P.; Das S.; Dash S.; De S.; De Caro A.; de Cataldo G.; De Cilladi L.; de Cuveland J.; De Falco A.; De Gruttola D.; De Marco N.; De Martin C.; De Pasquale S.; Deb S.; Degenhardt H.F.; Deja K.R.; Stritto L.D.; Delsanto S.; Deng W.; Dhankher P.; Di Bari D.; Di Mauro A.; Diaz R.A.; Dietel T.; Ding Y.; Divia R.; Dixit D.U.; Djuvsland O.; Dmitrieva U.; Do J.; Dobrin A.; Donigus B.; Dordic O.; Dubey A.K.; Dubla A.; Dudi S.; Dukhishyam M.; Dupieux P.; Dzalaiova N.; Eder T.M.; Ehlers R.J.; Eikeland V.N.; Eisenhut F.; Elia D.; Erazmus B.; Ercolessi F.; Erhardt F.; Erokhin A.; Ersdal M.R.; Espagnon B.; Eulisse G.; Evans D.; Evdokimov S.; Fabbietti L.; Faggin M.; Faivre J.; Fan F.; Fantoni A.; Fasel M.; Fecchio P.; Feliciello A.; Feofilov G.; Fernandez Tellez A.; Ferrero A.; Ferretti A.; Feuillard V.J.G.; Figiel J.; Filchagin S.; Finogeev D.; Fionda F.M.; Fiorenza G.; Flor F.; Flores A.N.; Foertsch S.; Foka P.; Fokin S.; Fragiacomo E.; Frajna E.; Fuchs U.; Funicello N.; Furget C.; Furs A.; Gaardhoje J.J.; Gagliardi M.; Gago A.M.; Gal A.; Galvan C.D.; Ganoti P.; Garabatos C.; Garcia J.R.A.; Garcia-Solis E.; Garg K.; Gargiulo C.; Garibli A.; Garner K.; Gasik P.; Gauger E.F.; Gautam A.; Gay Ducati M.B.; Germain M.; Ghosh P.; Ghosh S.K.; Giacalone M.; Gianotti P.; Giubellino P.; Giubilato P.; Glaenzer A.M.C.; Glassel P.; Goh D.J.Q.; Gonzalez V.; Gonzalez-Trueba L.H.; Gorbunov S.; Gorgon M.; Gorlich L.; Gotovac S.; Grabski V.; Graczykowski L.K.; Greiner L.; Grelli A.; Grigoras C.; Grigoriev V.; Grigoryan S.; Groettvik O.S.; Grosa F.; Grosse-Oetringhaus J.F.; Grosso R.; Guardiano G.G.; Guernane R.; Guilbaud M.; Gulbrandsen K.; Gunji T.; Guo W.; Gupta A.; Gupta R.; Guzman S.P.; Gyulai L.; Habib M.K.; Hadjidakis C.; Halimoglu G.; Hamagaki H.; Hamar G.; Hamid M.; Hannigan R.; Haque M.R.; Harlenderova A.; Harris J.W.; Harton A.; Hasenbichler J.A.; Hassan H.; Hatzifotiadou D.; Hauer P.; Havener L.B.; Hayashi S.; Heckel S.T.; Hellbar E.; Helstrup H.; Herman T.; Hernandez E.G.; Herrera Corral G.; Herrmann F.; Hetland K.F.; Hillemanns H.; Hills C.; Hippolyte B.; Hofman B.; Hohlweger B.; Honermann J.; Hong G.H.; Horak D.; Hornung S.; Horzyk A.; Hosokawa R.; Hou Y.; Hristov P.; Hughes C.; Huhn P.; Humanic T.J.; Hushnud H.; Husova L.A.; Hutson A.; Hutter D.; Iddon J.P.; Ilkaev R.; Ilyas H.; Inaba M.; Innocenti G.M.; Ippolitov M.; Isakov A.; Islam M.S.; Ivanov M.; Ivanov V.; Izucheev V.; Jablonski M.; Jacak B.; Jacazio N.; Jacobs P.M.; Jadlovska S.; Jadlovsky J.; Jaelani S.; Jahnke C.; Jakubowska M.J.; Jalotra A.; Janik M.A.; Janson T.; Jercic M.; Jevons O.; Jimenez A.A.P.; Jonas F.; Jones P.G.; Jowett J.M.; Jung J.; Jung M.; Junique A.; Jusko A.; Kaewjai J.; Kalinak P.; Kalteyer A.S.; Kalweit A.; Kaplin V.; Kar S.; Karasu Uysal A.; Karatovic D.; Karavichev O.; Karavicheva T.; Karczmarczyk P.; Karpechev E.; Kazantsev A.; Kebschull U.; Keidel R.; Keijdener D.L.D.; Keil M.; Ketzer B.; Khabanova Z.; Khan A.M.; Khan S.; Khanzadeev A.; Kharlov Y.; Khatun A.; Khuntia A.; Kileng B.; Kim B.; Kim C.; Kim D.J.; Kim E.J.; Kim J.; Kim J.S.; Kim J.; Kim J.; Kim J.; Kim M.; Kim S.; Kim T.; Kirsch S.; Kisel I.; Kiselev S.; Kisiel A.; Kitowski J.P.; Klay J.L.; Klein J.; Klein S.; Klein-Bosing C.; Kleiner M.; Klemenz T.; Kluge A.; Knospe A.G.; Kobdaj C.; Kohler M.K.; Kollegger T.; Kondratyev A.; Kondratyeva N.; Kondratyuk E.; Konig J.; Konigstorfer S.A.; Konopka P.J.; Kornakov G.; Koryciak S.D.; Koska L.; Kotliarov A.; Kovalenko O.; Kovalenko V.; Kowalski M.; Kralik I.; Kravcakova A.; Kreis L.; Krivda M.; Krizek F.; Gajdosova K.K.; Kroesen M.; Kruger M.; Kryshen E.; Krzewicki M.; Kucera V.; Kuhn C.; Kuijer P.G.; Kumaoka T.; Kumar D.; Kumar L.; Kumar N.; Kundu S.; Kurashvili P.; Kurepin A.; Kurepin A.B.; Kuryakin A.; Kushpil S.; Kvapil J.; Kweon M.J.; Kwon J.Y.; Kwon Y.; La Pointe S.L.; La Rocca P.; Lai Y.S.; Lakrathok A.; Lamanna M.; Langoy R.; Lapidus K.; Larionov P.; Laudi E.; Lautner L.; Lavicka R.; Lazareva T.; Lea R.; Lehrbach J.; Lemmon R.C.; Leon Monzon I.; Lesser E.D.; Lettrich M.; Levai P.; Li X.; Li X.L.; Lien J.; Lietava R.; Lim B.; Lim S.H.; Lindenstruth V.; Lindner A.; Lippmann C.; Liu A.; Liu D.H.; Liu J.; Lofnes I.M.; Loginov V.; Loizides C.; Loncar P.; Lopez J.A.; Lopez X.; Lopez Torres E.; Luhder J.R.; Lunardon M.; Luparello G.; Ma Y.G.; Maevskaya A.; Mager M.; Mahmoud T.; Maire A.; Malaev M.; Malik N.M.; Malik Q.W.; Malinina L.; Mal'Kevich D.; Mallick N.; Malzacher P.; Mandaglio G.; Manko V.; Manso F.; Manzari V.; Mao Y.; Mares J.; Margagliotti G.V.; Margotti A.; Marin A.; Markert C.; Marquard M.; Martin N.A.; Martinengo P.; Martinez J.L.; Martinez M.I.; Martinez Garcia G.; Masciocchi S.; Masera M.; Masoni A.; Massacrier L.; Mastroserio A.; Mathis A.M.; Matonoha O.; Matuoka P.F.T.; Matyja A.; Mayer C.; Mazuecos A.L.; Mazzaschi F.; Mazzilli M.; Mazzoni M.A.; Mdhluli J.E.; Mechler A.F.; Meddi F.; Melikyan Y.; Menchaca-Rocha A.; Meninno E.; Menon A.S.; Meres M.; Mhlanga S.; Miake Y.; Micheletti L.; Migliorin L.C.; Mihaylov D.L.; Mikhaylov K.; Mishra A.N.; Miskowiec D.; Modak A.; Mohanty A.P.; Mohanty B.; Mohisin Khan M.; Molander M.A.; Moravcova Z.; Mordasini C.; Moreira De Godoy D.A.; Moreno L.A.P.; Morozov I.; Morsch A.; Mrnjavac T.; Muccifora V.; Mudnic E.; Muhlheim D.; Muhuri S.; Mulligan J.D.; Mulliri A.; Munhoz M.G.; Munzer R.H.; Murakami H.; Murray S.; Musa L.; Musinsky J.; Myrcha J.W.; Naik B.; Nair R.; Nandi B.K.; Nania R.; Nappi E.; Nassirpour A.F.; Nath A.; Nattrass C.; Neagu A.; Nellen L.; Nesbo S.V.; Neskovic G.; Nesterov D.; Nielsen B.S.; Nikolaev S.; Nikulin S.; Nikulin V.; Noferini F.; Noh S.; Nomokonov P.; Norman J.; Novitzky N.; Nowakowski P.; Nyanin A.; Nystrand J.; Ogino M.; Ohlson A.; Okorokov V.A.; Oleniacz J.; Oliveira Da Silva A.C.; Oliver M.H.; Onnerstad A.; Oppedisano C.; Ortiz Velasquez A.; Osako T.; Oskarsson A.; Otwinowski J.; Oya M.; Oyama K.; Pachmayer Y.; Padhan S.; Pagano D.; Paic G.; Palasciano A.; Pan J.; Panebianco S.; Pareek P.; Park J.; Parkkila J.E.; Pathak S.P.; Patra R.N.; Paul B.; Pei H.; Peitzmann T.; Peng X.; Pereira L.G.; Pereira Da Costa H.; Peresunko D.; Perez G.M.; Perrin S.; Pestov Y.; Petracek V.; Petrovici M.; Pezzi R.P.; Piano S.; Pikna M.; Pillot P.; Pinazza O.; Pinsky L.; Pinto C.; Pisano S.; Ploskon M.; Planinic M.; Pliquett F.; Poghosyan M.G.; Polichtchouk B.; Politano S.; Poljak N.; Pop A.; Porteboeuf-Houssais S.; Porter J.; Pozdniakov V.; Prasad S.K.; Preghenella R.; Prino F.; Pruneau C.A.; Pshenichnov I.; Puccio M.; Qiu S.; Quaglia L.; Quishpe R.E.; Ragoni S.; Rakotozafindrabe A.; Ramello L.; Rami F.; Ramirez S.A.R.; Ramos A.G.T.; Rancien T.A.; Raniwala R.; Raniwala S.; Rasanen S.S.; Rath R.; Ravasenga I.; Read K.F.; Redelbach A.R.; Redlich K.; Rehman A.; Reichelt P.; Reidt F.; Reme-ness H.A.; Renfordt R.; Rescakova Z.; Reygers K.; Riabov A.; Riabov V.; Richert T.; Richter M.; Riegler W.; Riggi F.; Ristea C.; Rodriguez Cahuantzi M.; Roed K.; Rogalev R.; Rogochaya E.; Rogoschinski T.S.; Rohr D.; Rohrich D.; Rojas P.F.; Rokita P.S.; Ronchetti F.; Rosano A.; Rosas E.D.; Rossi A.; Rotondi A.; Roy A.; Roy P.; Roy S.; Rubini N.; Rueda O.V.; Rui R.; Rumyantsev B.; Russek P.G.; Rustamov A.; Ryabinkin E.; Ryabov Y.; Rybicki A.; Rytkonen H.; Rzesa W.; Saarimaki O.A.M.; Sadek R.; Sadovsky S.; Saetre J.; Safarik K.; Saha S.K.; Saha S.; Sahoo B.; Sahoo P.; Sahoo R.; Sahoo S.; Sahu D.; Sahu P.K.; Saini J.; Sakai S.; Sambyal S.; Samsonov V.; Sarkar D.; Sarkar N.; Sarma P.; Sarti V.M.; Sas M.H.P.; Schambach J.; Scheid H.S.; Schiaua C.; Schicker R.; Schmah A.; Schmidt C.; Schmidt H.R.; Schmidt M.O.; Schmidt M.; Schmidt N.V.; Schmier A.R.; Schotter R.; Schukraft J.; Schutz Y.; Schwarz K.; Schweda K.; Scioli G.; Scomparin E.; Seger J.E.; Sekiguchi Y.; Sekihata D.; Selyuzhenkov I.; Senyukov S.; Seo J.J.; Serebryakov D.; Serksnyte L.; Sevcenco A.; Shaba T.J.; Shabanov A.; Shabetai A.; Shahoyan R.; Shaikh W.; Shangaraev A.; Sharma A.; Sharma H.; Sharma M.; Sharma N.; Sharma S.; Sharma U.; Sheibani O.; Shigaki K.; Shimomura M.; Shirinkin S.; Shou Q.; Sibiriak Y.; Siddhanta S.; Siemiarczuk T.; Silva T.F.; Silvermyr D.; Simantathammakul T.; Simonetti G.; Singh B.; Singh R.; Singh R.; Singh R.; Singh V.K.; Singhal V.; Sinha T.; Sitar B.; Sitta M.; Skaali T.B.; Skorodumovs G.; Slupecki M.; Smirnov N.; Snellings R.J.M.; Soncco C.; Song J.; Songmoolnak A.; Soramel F.; Sorensen S.; Sputowska I.; Stachel J.; Stan I.; Steffanic P.J.; Stiefelmaier S.F.; Stocco D.; Storehaug I.; Storetvedt M.M.; Stylianidis C.P.; Suaide A.A.P.; Sugitate T.; Suire C.; Sukhanov M.; Suljic M.; Sultanov R.; Sumbera M.; Sumberia V.; Sumowidagdo S.; Swain S.; Szabo A.; Szarka I.; Tabassam U.; Taghavi S.F.; Taillepied G.; Takahashi J.; Tambave G.J.; Tang S.; Tang Z.; Tapia Takaki J.D.; Tarhini M.; Tarzila M.G.; Tauro A.; Tejeda Munoz G.; Telesca A.; Terlizzi L.; Terrevoli C.; Tersimonov G.; Thakur S.; Thomas D.; Tieulent R.; Tikhonov A.; Timmins A.R.; Tkacik M.; Toia A.; Topilskaya N.; Toppi M.; Torales-Acosta F.; Tork T.; Torres S.R.; Trifiro A.; Tripathy S.; Tripathy T.; Trogolo S.; Trubnikov V.; Trzaska W.H.; Trzcinski T.P.; Trzeciak B.A.; Tumkin A.; Turrisi R.; Tveter T.S.; Ullaland K.; Uras A.; Urioni M.; Usai G.L.; Vala M.; Valle N.; Vallero S.; van der Kolk N.; van Doremalen L.V.R.; van Leeuwen M.; Vande Vyvre P.; Varga D.; Varga Z.; Varga-Kofarago M.; Vargas A.; Vasileiou M.; Vasiliev A.; Vazquez Doce O.; Vechernin V.; Vercellin E.; Vergara Limon S.; Vermunt L.; Vertesi R.; Verweij M.; Vickovic L.; Vilakazi Z.; Villalobos Baillie O.; Vino G.; Vinogradov A.; Virgili T.; Vislavicius V.; Vodopyanov A.; Volkel B.; Volkl M.A.; Voloshin K.; Voloshin S.A.; Volpe G.; von Haller B.; Vorobyev I.; Voscek D.; Vozniuk N.; Vrlakova J.; Wagner B.; Wang C.; Wang D.; Weber M.; Weelden R.J.G.V.; Wegrzynek A.; Wenzel S.C.; Wessels J.P.; Wiechula J.; Wikne J.; Wilk G.; Wilkinson J.; Willems G.A.; Windelband B.; Winn M.; Witt W.E.; Wright J.R.; Wu W.; Wu Y.; Xu R.; Yadav A.K.; Yalcin S.; Yamaguchi Y.; Yamakawa K.; Yang S.; Yano S.; Yin Z.; Yokoyama H.; Yoo I.-K.; Yoon J.H.; Yuan S.; Yuncu A.; Zaccolo V.; Zampolli C.; Zanoli H.J.C.; Zardoshti N.; Zarochentsev A.; Zavada P.; Zaviyalov N.; Zhalov M.; Zhang B.; Zhang S.; Zhang X.; Zhang Y.; Zherebchevskii V.; Zhi Y.; Zhigareva N.; Zhou D.; Zhou Y.; Zhu J.; Zhu Y.; Zichichi A.; Zinovjev G.; Zurlo N.Acharya S.; Adamova D.; Adler A.; Aglieri Rinella G.; Agnello M.; Agrawal N.; Ahammed Z.; Ahmad S.; Ahn S.U.; Ahuja I.; Akbar Z.; Akindinov A.; Al-Turany M.; Alam S.N.; Aleksandrov D.; Alessandro B.; Alfanda H.M.; Alfaro Molina R.; Ali B.; Ali Y.; Alici A.; Alizadehvandchali N.; Alkin A.; Alme J.; Alt T.; Altenkamper L.; Altsybeev I.; Anaam M.N.; Andrei C.; Andreou D.; Andronic A.; Angeletti M.; Anguelov V.; Antinori F.; Antonioli P.; Anuj C.; Apadula N.; Aphecetche L.; Appelshauser H.; Arcelli S.; Arnaldi R.; Arsene I.C.; Arslandok M.; Augustinus A.; Averbeck R.; Aziz S.; Azmi M.D.; Badala A.; Baek Y.W.; Bai X.; Bailhache R.; Bailung Y.; Bala R.; Balbino A.; Baldisseri A.; Balis B.; Ball M.; Banerjee D.; Barbera R.; Barioglio L.; Barlou M.; Barnafoldi G.G.; Barnby L.S.; Barret V.; Bartels C.; Barth K.; Bartsch E.; Baruffaldi F.; Bastid N.; Basu S.; Batigne G.; Batyunya B.; Bauri D.; Alba J.L.B.; Bearden I.G.; Beattie C.; Belikov I.; Bell Hechavarria A.D.C.; Bellini F.; Bellwied R.; Belokurova S.; Belyaev V.; Bencedi G.; Beole S.; Bercuci A.; Berdnikov Y.; Berdnikova A.; Bergmann L.; Besoiu M.G.; Betev L.; Bhaduri P.P.; Bhasin A.; Bhat I.R.; Bhat M.A.; Bhattacharjee B.; Bhattacharya P.; Bianchi L.; Bianchi N.; Bielcik J.; Bielcikova J.; Biernat J.; Bilandzic A.; Biro G.; Biswas S.; Blair J.T.; Blau D.; Blidaru M.B.; Blume C.; Boca G.; Bock F.; Bogdanov A.; Boi S.; Bok J.; Boldizsar L.; Bolozdynya A.; Bombara M.; Bond P.M.; Bonomi G.; Borel H.; Borissov A.; Bossi H.; Botta E.; Bratrud L.; Braun-Munzinger P.; Bregant M.; Broz M.; Bruno G.E.; Buckland M.D.; Budnikov D.; Buesching H.; Bufalino S.; Bugnon O.; Buhler P.; Buthelezi Z.; Butt J.B.; Bylinkin A.; Bysiak S.A.; Cai M.; Caines H.; Caliva A.; Calvo Villar E.; Camacho J.M.M.; Camacho R.S.; Camerini P.; Canedo F.D.M.; Carnesecchi F.; Caron R.; Castillo Castellanos J.; Casula E.A.R.; Catalano F.; Ceballos Sanchez C.; Chakraborty P.; Chandra S.; Chapeland S.; Chartier M.; Chattopadhyay S.; Chattopadhyay S.; Chauvin A.; Chavez T.G.; Cheng T.; Cheshkov C.; Cheynis B.; Chibante Barroso V.; Chinellato D.D.; Cho S.; Chochula P.; Christakoglou P.; Christensen C.H.; Christiansen P.; Chujo T.; Cicalo C.; Cifarelli L.; Cindolo F.; Ciupek M.R.; Clai G.; Cleymans J.; Colamaria F.; Colburn J.S.; Colella D.; Collu A.; Colocci M.; Concas M.; Conesa Balbastre G.; Conesa del Valle Z.; Contin G.; Contreras J.G.; Coquet M.L.; Cormier T.M.; Cortese P.; Cosentino M.R.; Costa F.; Costanza S.; Crochet P.; Cruz-Torres R.; Cuautle E.; Cui P.; Cunqueiro L.; Dainese A.; Danisch M.C.; Danu A.; Das I.; Das P.; Das P.; Das S.; Dash S.; De S.; De Caro A.; de Cataldo G.; De Cilladi L.; de Cuveland J.; De Falco A.; De Gruttola D.; De Marco N.; De Martin C.; De Pasquale S.; Deb S.; Degenhardt H.F.; Deja K.R.; Stritto L.D.; Delsanto S.; Deng W.; Dhankher P.; Di Bari D.; Di Mauro A.
- âŠ