85 research outputs found

    Sustained eruptions on Enceladus explained by turbulent dissipation in tiger stripes

    Full text link
    Spacecraft observations suggest that the plumes of Saturn's moon Enceladus draw water from a subsurface ocean, but the sustainability of conduits linking ocean and surface is not understood. Observations show sustained (though tidally modulated) fissure eruptions throughout each orbit, and since the 2005 discovery of the plumes. Peak plume flux lags peak tidal extension by ∼\sim1 radian, suggestive of resonance. Here we show that a model of the tiger stripes as tidally-flexed slots that puncture the ice shell can simultaneously explain the persistence of the eruptions through the tidal cycle, the phase lag, and the total power output of the tiger stripe terrain, while suggesting that the eruptions are maintained over geological timescales. The delay associated with flushing and refilling of \emph{O}(1) m-wide slots with ocean water causes erupted flux to lag tidal forcing and helps to buttress slots against closure, while tidally pumped in-slot flow leads to heating and mechanical disruption that staves off slot freeze-out. Much narrower and much wider slots cannot be sustained. In the presence of long-lived slots, the 106^6-yr average power output of the tiger stripes is buffered by a feedback between ice melt-back and subsidence to \emph{O}(1010^{10}) W, which is similar to the observed power output, suggesting long-term stability. Turbulent dissipation makes testable predictions for the final flybys of Enceladus by the \emph{Cassini} spacecraft. Our model shows how open connections to an ocean can be reconciled with, and sustain, long-lived eruptions. Turbulent dissipation in long-lived slots helps maintain the ocean against freezing, maintains access by future Enceladus missions to ocean materials, and is plausibly the major energy source for tiger stripe activity

    Valuing life detection missions

    Full text link
    Recent discoveries imply that Early Mars was habitable for life-as-we-know-it; that Enceladus might be habitable; and that many stars have Earth-sized exoplanets whose insolation favors surface liquid water. These exciting discoveries make it more likely that spacecraft now under construction - Mars 2020, ExoMars rover, JWST, Europa Clipper - will find habitable, or formerly habitable, environments. Did these environments see life? Given finite resources (\$10bn/decade for the US ), how could we best test the hypothesis of a second origin of life? Here, we first state the case for and against flying life detection missions soon. Next, we assume that life detection missions will happen soon, and propose a framework for comparing the value of different life detection missions: Scientific value = (Reach x grasp x certainty x payoff) / \$ After discussing each term in this framework, we conclude that scientific value is maximized if life detection missions are flown as hypothesis tests. With hypothesis testing, even a nondetection is scientifically valuable.Comment: Accepted by "Astrobiology.

    High and dry: billion-year trends in the aridity of river-forming climates on Mars

    Full text link
    Mars' wet-to-dry transition is a major environmental catastrophe, yet the spatial pattern, tempo, and cause of drying are poorly constrained. We built a globally-distributed database of constraints on Mars late-stage paleolake size relative to catchment area (aridity index), and found evidence for climate zonation as Mars was drying out. Aridity increased over time in southern midlatitude highlands, where lakes became proportionally as small as in modern Nevada. Meanwhile, intermittently wetter climates persisted in equatorial and northern-midlatitude lowlands. This is consistent with a change in Mars' greenhouse effect that left highlands too cold for liquid water except during a brief melt season, or alternatively with a fall in Mars' groundwater table. The data are consistent with a switch of unknown cause in the dependence of aridity index on elevation, from high-and-wet early on, to high-and-dry later. These results sharpen our view of Mars' climate as surface conditions became increasingly stressing for life.Comment: Accepted by Geophysical Research Letter

    Exoplanet secondary atmosphere loss and revival

    Full text link
    The next step on the path toward another Earth is to find atmospheres similar to those of Earth and Venus - high-molecular-weight (secondary) atmospheres - on rocky exoplanets. Many rocky exoplanets are born with thick (> 10 kbar) H2_2-dominated atmospheres but subsequently lose their H2_2; this process has no known Solar System analog. We study the consequences of early loss of a thick H2_2 atmosphere for subsequent occurrence of a high-molecular-weight atmosphere using a simple model of atmosphere evolution (including atmosphere loss to space, magma ocean crystallization, and volcanic outgassing). We also calculate atmosphere survival for rocky worlds that start with no H2_2. Our results imply that most rocky exoplanets orbiting closer to their star than the Habitable Zone that were formed with thick H2_2-dominated atmospheres lack high-molecular-weight atmospheres today. During early magma ocean crystallization, high-molecular-weight species usually do not form long-lived high-molecular-weight atmospheres; instead they are lost to space alongside H2_2. This early volatile depletion also makes it more difficult for later volcanic outgassing to revive the atmosphere. However, atmospheres should persist on worlds that start with abundant volatiles (for example, waterworlds). Our results imply that in order to find high-molecular-weight atmospheres on warm exoplanets orbiting M-stars, we should target worlds that formed H2_2-poor, that have anomalously large radii, or which orbit less active stars
    • …
    corecore