1,208 research outputs found
Itinerant-localized dual character of a strongly-correlated superfluid Bose gas in an optical lattice
We investigate a strongly-correlated Bose gas in an optical lattice.
Extending the standard-basis operator method developed by Haley and Erdos to a
boson Hubbard model, we calculate excitation spectra in the superfluid phase,
as well as in the Mott insulating phase, at T=0. In the Mott phase, the
excitation spectrum has a finite energy gap, reflecting the localized character
of atoms. In the superfluid phase, the excitation spectrum is shown to have an
itinerant-localized dual structure, where the gapless Bogoliubov mode (which
describes the itinerant character of superfluid atoms) and a band with a finite
energy gap coexist. We also show that the rf-tunneling current measurement
would give a useful information about the duality of a strongly-correlated
superfluid Bose gas near the superfluid-insulator transition.Comment: 10 pages, 4 figure
Core-Collapse Supernovae: Modeling between Pragmatism and Perfectionism
We briefly summarize recent efforts in Garching for modeling stellar core
collapse and post-bounce evolution in one and two dimensions. The transport of
neutrinos of all flavors is treated by iteratively solving the coupled system
of frequency-dependent moment equations together with a model Boltzmann
equation which provides the closure. A variety of progenitor stars, different
nuclear equations of state, stellar rotation, and global asymmetries due to
large-mode hydrodynamic instabilities have been investigated to ascertain the
road to finally successful, convectively supported neutrino-driven explosions.Comment: 8 pages, contribution to Procs. 12th Workshop on Nuclear
Astrophysics, Ringberg Castle, March 22-27, 200
Luminescence properties of piezoelectric single crystals with langasite structure
ArticleJOURNAL OF LUMINESCENCE. 122: 205-207 (2007)journal articl
The cross-frequency mediation mechanism of intracortical information transactions
In a seminal paper by von Stein and Sarnthein (2000), it was hypothesized
that "bottom-up" information processing of "content" elicits local, high
frequency (beta-gamma) oscillations, whereas "top-down" processing is
"contextual", characterized by large scale integration spanning distant
cortical regions, and implemented by slower frequency (theta-alpha)
oscillations. This corresponds to a mechanism of cortical information
transactions, where synchronization of beta-gamma oscillations between distant
cortical regions is mediated by widespread theta-alpha oscillations. It is the
aim of this paper to express this hypothesis quantitatively, in terms of a
model that will allow testing this type of information transaction mechanism.
The basic methodology used here corresponds to statistical mediation analysis,
originally developed by (Baron and Kenny 1986). We generalize the classical
mediator model to the case of multivariate complex-valued data, consisting of
the discrete Fourier transform coefficients of signals of electric neuronal
activity, at different frequencies, and at different cortical locations. The
"mediation effect" is quantified here in a novel way, as the product of "dual
frequency RV-coupling coefficients", that were introduced in (Pascual-Marqui et
al 2016, http://arxiv.org/abs/1603.05343). Relevant statistical procedures are
presented for testing the cross-frequency mediation mechanism in general, and
in particular for testing the von Stein & Sarnthein hypothesis.Comment: https://doi.org/10.1101/119362 licensed as CC-BY-NC-ND 4.0
International license: http://creativecommons.org/licenses/by-nc-nd/4.0
Optical anisotropy and electronic structures of CdMoO4 and CdWO4 crystals: Polarized reflection measurements, x-ray photoelectron spectroscopy, and electronic structure calculations
Copyright (c) 2008 American Physical SocietyArticlePHYSICAL REVIEW B. 77(15): 155118 (2008)journal articl
Self-trapped states and the related luminescence in PbCl crystals
We have comprehensively investigated localized states of photoinduced
electron-hole pairs with electron-spin-resonance technique and
photoluminescence (PL) in a wide temperature range of 5-200 K. At low
temperatures below 70 K, holes localize on Pb ions and form
self-trapping hole centers of Pb. The holes transfer to other trapping
centers above 70 K. On the other hand, electrons localize on two Pb ions
at higher than 50 K and form self-trapping electron centers of Pb.
From the thermal stability of the localized states and PL, we clarify that
blue-green PL band at 2.50 eV is closely related to the self-trapped holes.Comment: 8 pages (10 figures), ReVTEX; removal of one figure, Fig. 3 in the
version
- âŠ