1,013 research outputs found

    Itinerant-localized dual character of a strongly-correlated superfluid Bose gas in an optical lattice

    Full text link
    We investigate a strongly-correlated Bose gas in an optical lattice. Extending the standard-basis operator method developed by Haley and Erdos to a boson Hubbard model, we calculate excitation spectra in the superfluid phase, as well as in the Mott insulating phase, at T=0. In the Mott phase, the excitation spectrum has a finite energy gap, reflecting the localized character of atoms. In the superfluid phase, the excitation spectrum is shown to have an itinerant-localized dual structure, where the gapless Bogoliubov mode (which describes the itinerant character of superfluid atoms) and a band with a finite energy gap coexist. We also show that the rf-tunneling current measurement would give a useful information about the duality of a strongly-correlated superfluid Bose gas near the superfluid-insulator transition.Comment: 10 pages, 4 figure

    Neutrino-driven explosions twenty years after SN1987A

    Full text link
    The neutrino-heating mechanism remains a viable possibility for the cause of the explosion in a wide mass range of supernova progenitors. This is demonstrated by recent two-dimensional hydrodynamic simulations with detailed, energy-dependent neutrino transport. Neutrino-driven explosions were not only found for stars in the range of 8-10 solar masses with ONeMg cores and in case of the iron core collapse of a progenitor with 11 solar masses, but also for a ``typical'' progenitor model of 15 solar masses. For such more massive stars, however, the explosion occurs significantly later than so far thought, and is crucially supported by large-amplitude bipolar oscillations due to the nonradial standing accretion shock instability (SASI), whose low (dipole and quadrupole) modes can develop large growth rates in conditions where convective instability is damped or even suppressed. The dominance of low-mode deformation at the time of shock revival has been recognized as a possible explanation of large pulsar kicks and of large-scale mixing phenomena observed in supernovae like SN 1987A.Comment: 11 pages, 6 figures; review proceeding for "Supernova 1987A: 20 Years After: Supernovae and Gamma-Ray Bursters" AIP, New York, eds. S. Immler, K.W. Weiler, and R. McCra

    Core-Collapse Supernovae: Modeling between Pragmatism and Perfectionism

    Full text link
    We briefly summarize recent efforts in Garching for modeling stellar core collapse and post-bounce evolution in one and two dimensions. The transport of neutrinos of all flavors is treated by iteratively solving the coupled system of frequency-dependent moment equations together with a model Boltzmann equation which provides the closure. A variety of progenitor stars, different nuclear equations of state, stellar rotation, and global asymmetries due to large-mode hydrodynamic instabilities have been investigated to ascertain the road to finally successful, convectively supported neutrino-driven explosions.Comment: 8 pages, contribution to Procs. 12th Workshop on Nuclear Astrophysics, Ringberg Castle, March 22-27, 200

    Is a soft nuclear equation of state extracted from heavy-ion data incompatible with pulsar data?

    Full text link
    We discuss the recent constraints on the nuclear equation of state from pulsar mass measurements and from subthreshold production of kaons in heavy-ion collisions. While recent pulsar data points towards a hard equation of state, the analysis of the heavy-ion data allows only for soft equations of state. We resolve the apparent contradiction by considering the different density regimes probed. We argue that future measurements of global properties of low-mass pulsars can serve as an excellent cross-check to heavy-ion data.Comment: 8 pages, 1 figure, contribution to the proceedings of the international conference on 'Nuclear Physics in Astrophysics III', Dresden, Germany, March 26-31, 2007, minor corrections to match published version, JPG in pres

    The Low Redshift survey at Calar Alto (LoRCA)

    Get PDF
    The Baryon Acoustic Oscillation (BAO) feature in the power spectrum of galaxies provides a standard ruler to measure the accelerated expansion of the Universe. To extract all available information about dark energy, it is necessary to measure a standard ruler in the local, z<0.2, universe where dark energy dominates most the energy density of the Universe. Though the volume available in the local universe is limited, it is just big enough to measure accurately the long 100 Mpc/h wave-mode of the BAO. Using cosmological N-body simulations and approximate methods based on Lagrangian perturbation theory, we construct a suite of a thousand light-cones to evaluate the precision at which one can measure the BAO standard ruler in the local universe. We find that using the most massive galaxies on the full sky (34,000 sq. deg.), i.e. a K(2MASS)<14 magnitude-limited sample, one can measure the BAO scale up to a precision of 4\% and 1.2\% using reconstruction). We also find that such a survey would help to detect the dynamics of dark energy.Therefore, we propose a 3-year long observational project, named the Low Redshift survey at Calar Alto (LoRCA), to observe spectroscopically about 200,000 galaxies in the northern sky to contribute to the construction of aforementioned galaxy sample. The suite of light-cones is made available to the public.Comment: 15 pages. Accepted in MNRAS. Please visit our website: http://lorca-survey.ft.uam.es

    The Low Redshift survey at Calar Alto (LoRCA)

    Get PDF
    The Baryon Acoustic Oscillation (BAO) feature in the power spectrum of galaxies provides a standard ruler to measure the accelerated expansion of the Universe. To extract all available information about dark energy, it is necessary to measure a standard ruler in the local, z<0.2, universe where dark energy dominates most the energy density of the Universe. Though the volume available in the local universe is limited, it is just big enough to measure accurately the long 100 Mpc/h wave-mode of the BAO. Using cosmological N-body simulations and approximate methods based on Lagrangian perturbation theory, we construct a suite of a thousand light-cones to evaluate the precision at which one can measure the BAO standard ruler in the local universe. We find that using the most massive galaxies on the full sky (34,000 sq. deg.), i.e. a K(2MASS)<14 magnitude-limited sample, one can measure the BAO scale up to a precision of 4\% and 1.2\% using reconstruction). We also find that such a survey would help to detect the dynamics of dark energy.Therefore, we propose a 3-year long observational project, named the Low Redshift survey at Calar Alto (LoRCA), to observe spectroscopically about 200,000 galaxies in the northern sky to contribute to the construction of aforementioned galaxy sample. The suite of light-cones is made available to the public.Comment: 15 pages. Accepted in MNRAS. Please visit our website: http://lorca-survey.ft.uam.es

    UNIT project: Universe NN-body simulations for the Investigation of Theoretical models from galaxy surveys

    Full text link
    We present the UNIT NN-body cosmological simulations project, designed to provide precise predictions for nonlinear statistics of the galaxy distribution. We focus on characterizing statistics relevant to emission line and luminous red galaxies in the current and upcoming generation of galaxy surveys. We use a suite of precise particle mesh simulations (FastPM) as well as with full NN-body calculations with a mass resolution of 1.2×109h1\sim 1.2\times10^9\,h^{-1}M_{\odot} to investigate the recently suggested technique of Angulo & Pontzen 2016 to suppress the variance of cosmological simulations We study redshift space distortions, cosmic voids, higher order statistics from z=2z=2 down to z=0z=0. We find that both two- and three-point statistics are unbiased. Over the scales of interest for baryon acoustic oscillations and redshift-space distortions, we find that the variance is greatly reduced in the two-point statistics and in the cross correlation between halos and cosmic voids, but is not reduced significantly for the three-point statistics. We demonstrate that the accuracy of the two-point correlation function for a galaxy survey with effective volume of 20 (h1h^{-1}Gpc)3^3 is improved by about a factor of 40, indicating that two pairs of simulations with a volume of 1 (h1h^{-1}Gpc)3^3 lead to the equivalent variance of \sim150 such simulations. The NN-body simulations presented here thus provide an effective survey volume of about seven times the effective survey volume of DESI or Euclid. The data from this project, including dark matter fields, halo catalogues, and their clustering statistics, are publicly available at http://www.unitsims.org.Comment: 12 pages, 9 figures. This version matches the one accepted by MNRAS. The data from this project are publicly available at: http://www.unitsims.or

    Self-trapped states and the related luminescence in PbCl2_2 crystals

    Get PDF
    We have comprehensively investigated localized states of photoinduced electron-hole pairs with electron-spin-resonance technique and photoluminescence (PL) in a wide temperature range of 5-200 K. At low temperatures below 70 K, holes localize on Pb2+^{2+} ions and form self-trapping hole centers of Pb3+^{3+}. The holes transfer to other trapping centers above 70 K. On the other hand, electrons localize on two Pb2+^{2+} ions at higher than 50 K and form self-trapping electron centers of Pb2_23+^{3+}. From the thermal stability of the localized states and PL, we clarify that blue-green PL band at 2.50 eV is closely related to the self-trapped holes.Comment: 8 pages (10 figures), ReVTEX; removal of one figure, Fig. 3 in the version

    Interaction and Localization of One-electron Orbitals in an Organic Molecule: Fictitious Parameter Analysis for Multi-physics Simulations

    Full text link
    We present a new methodology to analyze complicated multi-physics simulations by introducing a fictitious parameter. Using the method, we study quantum mechanical aspects of an organic molecule in water. The simulation is variationally constructed from the ab initio molecular orbital method and the classical statistical mechanics with the fictitious parameter representing the coupling strength between solute and solvent. We obtain a number of one-electron orbital energies of the solute molecule derived from the Hartree-Fock approximation, and eigenvalue-statistical analysis developed in the study of nonintegrable systems is applied to them. Based on the results, we analyze localization properties of the electronic wavefunctions under the influence of the solvent.Comment: 4 pages, 5 figures, the revised version will appear in J. Phys. Soc. Jpn. Vol.76 (No.1
    corecore