8 research outputs found

    CRISPR-KRISPR: A Method to Identify On-Target and Random Insertion of Donor DNAs and their Characterization in Knock-In Mice

    Get PDF
    CRISPR tools can generate knockout and knock-in animal models easily, but the models can contain off-target genomic lesions or random insertions of donor DNAs. Simpler methods to identify off-target lesions and random insertions, using tail or earpiece DNA, are unavailable. We develop CRISPR-KRISPR (CRISPR-Knock-ins and Random Inserts Searching PRotocol), a method to identify both off-target lesions and random insertions. CRISPR-KRISPR uses as little as 3.4 μg of genomic DNA; thus, it can be easily incorporated as an additional step to genotype founder animals for further breeding

    An Up-to-Date Anti-Cancer Treatment Strategy Focusing on HIF-1α Suppression: Its Application for Refractory Ovarian Cancer

    Get PDF
    Hypoxia inducible factor-1α (HIF-1α) predominantly determines the transcriptional activity of HIF-1, which induces the certain genetic expressions to participate in the proliferation and progression of the tumor. It is supposed that HIF-1α is also an extremely important factor in cancer treatment. Based on the results of our recent analyses using ovarian tumors, which indicated the close association of HIF-1α expression with the acquisition of malignancy and the characterization of histology, we further investigated the possibility of a new strategy of cancer therapy that targeted HIF-1α inhibition in the ovarian carcinoma. The cell line HUOCA-II, which originates from the refractory ovarian clear cell adenocarcinoma, was treated with rapamycin. The inhibitory effect of HIF-1α was analyzed by immunohistochemistry and western blotting. It was demonstrated that inhibition of HIF-1α and vascular endothelial growth factor (VEGF) expressions would lead to the down-regulation of tumor cell proliferation. Interestingly, there was little or no change in GLUT-1 expression by rapamycin administration. Thus, the inhibition of GLUT-1 may also be a key for the new strategy of cancer therapy as well as HIF-1α and VEGF

    Stimulation of Melanogenesis by Nordihydroguaiaretic Acid in Human Melanoma Cells

    No full text

    Selenium and Glutathione-Depleted Rats as a Sensitive Animal Model to Predict Drug-Induced Liver Injury in Humans

    No full text
    Drug-induced liver injury (DILI) is one of the most serious and frequent drug-related adverse events in humans. Selenium (Se) and glutathione (GSH) have a crucial role for the hepatoprotective effect against reactive metabolites or oxidative damage leading to DILI. The hepatoprotective capacity related to Se and GSH in rodents is considered to be superior compared to the capacity in humans. Therefore, we hypothesize that Se/GSH-depleted rats could be a sensitive animal model to predict DILI in humans. In this study, Se-deficiency is induced by feeding a Se-deficient diet and GSH-deficiency is induced by l-buthionine-S,R-sulfoxinine treatment via drinking water. The usefulness of this animal model is validated using flutamide, which is known to cause DILI in humans but not in intact rats. In the Se/GSH-depleted rats from the present study, decreases in glutathione peroxidase-1 protein expression and GSH levels and an increase in malondialdehyde levels in the liver are observed without any increase in plasma liver function parameters. Five-day repeated dosing of flutamide at 150 mg/kg causes hepatotoxicity in the Se/GSH-depleted rats but not in normal rats. In conclusion, Se/GSH-depleted rats are the most sensitive for detecting flutamide-induced hepatotoxicity in all the reported animal models

    Acute Effects of Transdermal Administration of Jojoba Oil on Lipid Metabolism in Mice

    No full text
    Background and objectives: Aroma therapy is a complementary therapy using essential oils diluted with carrier oils. Jojoba oils have been widely used as carrier oils. However, limited information is available regarding their effects on blood biochemical parameters. This study aimed to investigate the effect of transdermal administration of jojoba oil on blood biochemical parameters in mice. Materials and Methods: Eight-week-old male hairless mice were randomly divided into naïve control and treatment groups. In the treatment group, mice were topically administered 4 μL of jojoba oil, per gram of body weight, on the dorsa 30 min before euthanasia. Thereafter, serum biochemical parameters were assayed, and gene expression was analyzed in various tissues via a real-time polymerase chain reaction. Results: Serum non-esterified fatty acid (NEFA) levels increased significantly 30 min after topical application of jojoba oil (p < 0.05). Atgl was significantly upregulated in the liver (p < 0.05), and Atgl upregulation in the liver was positively correlated with serum NEFA levels (r = 0.592, p < 0.05). Furthermore, a trend of decreasing fatty acid trafficking-related gene (FABPpm, FATP-1, FATP-3, and FATP-4) expression in the skin after topical application of jojoba oil (p = 0.067, 0.074, 0.076, and 0.082, respectively) was observed. Conclusions: Serum NEFA levels were elevated 30 min after transdermal administration of jojoba oil. The mechanisms of elevated serum NEFA levels might be related to both enhanced lipolysis in the liver and reduced fatty acid trafficking in the skin

    Notch Signaling May Be Involved in the Abnormal Differentiation of Epidermal Keratinocytes in Psoriasis

    No full text
    Localization of each keratin isoform differs among epidermal layers. Proliferating basal cells synthesize keratin 14 (K14) and suprabasal cells express keratin 10 (K10) in normal skin. Notch signaling is essential for keratinocyte differentiation. Notch1 is expressed in all epidermal layers, Notch2 in the basal cell layer and Notch3 in basal cell and spinous cell layers in normal epidermis. It has been poorly elucidated how localization and expression levels of Notch molecules are related to epidermal molecular markers K10 and K14 in psoriatic skin with abnormal differentiation of epidermal tissue. This study aimed to investigate the relationship between abnormal differentiation of epidermal cells in psoriatic skin and expression of Notch molecules. We investigated keratins (K14 and K10) and Notches (1, 2, 3 and 4) using immunohistochemistry in psoriatic skin (n=30) and normal skin (n=10). In normal skin, K14 and K10 were discretely observed in the basal cell layer and suprabasal layer, respectively. In psoriatic skin, K14 was expressed in the pan epidermal layer while it and K10 were co-expressed in some middle suprabasal layer cells. Notch1, 2, 3, and 4 localized in all epidermal layers in normal skin. In psoriatic skin, Notch1, 2, and 4 mainly localized in suprabasilar layers and Notch3 is lacalized in pan epidermal, suprabasilar, and basilar layers. Protein and mRNA of Notch1, 2, and 3 isoforms decreased in psoriatic epidermis compared with normal epidermis. These data suggest that decrements in these Notch molecules might cause aberrant expression of K10 and K14 leading to anomalous differentiation of the epidermis in psoriatic lesions
    corecore