82 research outputs found

    Hydrostatic contraction and anisotropic contraction effects on oxygen molecule nanorods

    Get PDF
    We study the effects of both hydrostatic and anisotropic contractions on the molecular condensation of oxygen molecules (O2) physisorbed to nanosized pores, termed “O2 nanorods”, through the magnetization measurements. Multisteps of O2 solidification accompany the reduction in structural symmetry with decreasing temperature, such that the structural change by external stress varies the stability of O2 solidification. For initial pore diameters of D = 8.5, 14.5, and 24.0 nm, anisotropic compression for nanorods (preferential compression along radial direction of the pores) occurred, and molecule solidification is suppressed at the lower temperature side compared with that under hydrostatic compression. For the smallest D = 6.5 nm, a hydrostatic contraction almost occurred, and the high adsorption capability enabled the detection of both the melting transition and change in crystal structure within the β phase, in addition to α–β and β–γ transitions

    Purification and characterization of PAMP-12 (PAMP[9–20]) in porcine adrenal medulla as a major endogenous biologically active peptide

    Get PDF
    AbstractProadrenomedullin N-terminal 20 peptide (PAMP-20) is a potent hypotensive peptide processed from the adrenomedullin (AM) precursor. We developed a specific radioimmunoassay which recognizes the C-terminal region of PAMP-20. Using this radioimmunoassay, the distribution of immunoreactive (ir-) PAMP was determined in porcine tissues. High concentrations of ir-PAMP were observed in the adrenal medulla and in the atrium, and these values were comparable to the corresponding concentrations of ir-AM. The concentration of ir-PAMP was almost the same as that of ir-AM in the kidney, while ir-PAMP was significantly lower than ir-AM in the ventricle, lung, and aorta. Reversed-phase high performance liquid chromatography in each porcine tissue sample revealed that two major peaks of ir-PAMP existed: one emerged at a position identical to that of authentic porcine PAMP-20; the other unknown peak was eluted earlier. The unknown peptide was purified to homogeneity from porcine adrenal medulla, and its complete amino acid sequence was determined. This peptide was found to be PAMP[9–20] with a C-terminal amide structure, and was named PAMP-12. Intravenous injections of PAMP-12 in anesthetized rats showed a significant hypotensive effect in a dose-dependent fashion, and the effect was comparable to that of PAMP-20. These data indicate that PAMP-12, a major component of ir-PAMP, is processed from the AM precursor, as is PAMP-20, and may participate in cardiovascular control

    Hydrostatic pressure effects on superconducting transition of nanostructured niobium highly strained by high-pressure torsion

    Get PDF
    We study the effects of hydrostatic pressure (HP) compression on the superconducting transition of severely strained Nb samples, whose grain sizes are reduced to the submicrometer level. Engineered granularity by high-pressure torsion (HPT) treatment changes the strength of coupling between submicrometer-scale grains and introduces lattice strain. We attempt to utilize the initially accumulated shear strain in the starting material for increasing the superconducting transition temperature Tc under HP compression. The HP effects on non-strained Nb have already been investigated in the pressure regime over 100 GPa by Struzhkin et al. [Phys. Rev. Lett. 79, 4262 (1997)], and Tc reportedly exhibited an increase from 9.2 to 9.9 K at approximately 10 GPa. (1) Slightly strained Nb in the HPT treatment exhibits the increase in Tc under HP due to the strengthening of the intergrain coupling, so the pressure scale of the pressure response observed by Struzhkin et al. is reduced to approximately one-seventh at the maximum. (2) Prominently strained Nb in the HPT treatment exhibits the increase in Tc under HP due to a reduction in structural symmetry at the unit-cell level: In a Nb sample subjected to HPT (6 GPa, 10 revolutions), Tc exceeds 9.9 K at approximately 2 GPa. According to our first-principle calculations, the reduction in the structural symmetry affords an increase in the density of states at the Fermi energy, thereby yielding a prominent increase in Tc at low pressures

    Hydrostatic Compression Effects on Fifth-Group Element Superconductors V, Nb, and Ta Subjected to High-Pressure Torsion

    Get PDF
    In fifth-group element superconductors V, Nb, and Ta, the increase in superconducting transition temperature (Tc) was attempted by using both high-pressure torsion (HPT) and additional hydrostatic pressure (HP) compression. The former brings about the grain refinement and strain accumulation in the unit-cell level. The additional compression for severely strained superconductors triggers strengthening intergrain-contact and/or structural deformation in the unit-cell level. The manner of the appearance of the above two effects depends on the kind of elements: First, in V, there is no prominent effect of HPT, comparing to the hydrostatic compression effects on its non-strained material. Next, in Ta, the effect of strengthening intergrain-contact appears at small hydrostatic compression, resulting in temporal increase in Tc. Finally, Nb exhibits prominent increase in Tc by both effects and, in particular, the structural deformation in the unit-cell level promotes the increase in Tc. Thus, the accumulation of residual strain in the level of starting material can be a promising work to manipulate Tc under HP compression

    Effect of an education program on improving knowledge of schizophrenia among parents of junior and senior high school students in Japan

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Early detection and intervention in schizophrenia are important in improving quality of life after treatment and are major issues in psychiatric care. Therefore, it is necessary to increase knowledge of schizophrenia among the general public. Among parents of junior and senior high school students in Japan, we compared rates of correct answers for items on knowledge of schizophrenia and ability to discriminate this psychosis from other disorders on questionnaires given before and after viewing a web-based education program.</p> <p>Methods</p> <p>Questionnaires were distributed to 2,690 parents. The program was developed to help parents obtain a basic understanding of schizophrenia and to emphasize the necessity of early detection.</p> <p>Results</p> <p>Before the program, the rate of correct answers was 77% for items concerning basic knowledge of schizophrenia, 47% for "discrimination of schizophrenia symptoms," and 30% for "discrimination of prodromal symptoms." The program resulted in an improvement in basic knowledge of schizophrenia, discrimination of schizophrenia symptoms, and discrimination of prodromal symptoms (<it>P </it>< 0.001 for all).</p> <p>Conclusions</p> <p>Our web-based education program was useful in helping parents acquire a basic knowledge of schizophrenia and discriminate correctly the symptoms of schizophrenia.</p

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection
    corecore