33 research outputs found

    An exocyst component, Sec5, is essential for ascospore formation in Bipolaris maydis

    Get PDF
    In this study, we identified Sec5 in Bipolaris maydis, a homologue of Sec5 in Saccharomyces cerevisiae and a possible exocyst component of the fungus. To examine how Sec5 affects the life cycle of B. maydis, we generated null mutant strains of the gene (Δsec5). The Δsec5 strains showed a strong reduction in hyphal growth and a slight reduction in pathogenicity. In sexual reproduction, they possessed the ability to develop pseudothecia. However, all ascospores were aborted in any of the asci obtained from crosses between Δsec5 and the wild-type. Our cytological study revealed that the abortion was caused by impairments of the post-meiotic stages in ascospore development, where ascospore delimitation and young spore elongation occur

    胆汁酸吸着薬であるセベラマーは、内因性のリポポリサッカライドの過負荷を軽減して、非アルコール性脂肪性肝炎の肝線維化を改善する。

    Get PDF
    Despite the use of various pharmacotherapeutic strategies, fibrosis due to nonalcoholic steatohepatitis (NASH) remains an unsatisfied clinical issue. We investigated the effect of sevelamer, a hydrophilic bile acid sequestrant, on hepatic fibrosis in a murine NASH model. Male C57BL/6J mice were fed a choline-deficient, L-amino acid-defined, high-fat (CDHF) diet for 12 weeks with or without orally administered sevelamer hydrochloride (2% per diet weight). Histological and biochemical analyses revealed that sevelamer prevented hepatic steatosis, macrophage infiltration, and pericellular fibrosis in CDHF-fed mice. Sevelamer reduced the portal levels of total bile acid and inhibited both hepatic and intestinal farnesoid X receptor activation. Gut microbiome analysis demonstrated that sevelamer improved a lower α-diversity and prevented decreases in Lactobacillaceae and Clostridiaceae as well as increases in Desulfovibrionaceae and Enterobacteriaceae in the CDHF-fed mice. Additionally, sevelamer bound to lipopolysaccharide (LPS) in the intestinal lumen and promoted its fecal excretion. Consequently, the sevelamer treatment restored the tight intestinal junction proteins and reduced the portal LPS levels, leading to the suppression of hepatic toll-like receptor 4 signaling pathway. Furthermore, sevelamer inhibited the LPS-mediated induction of fibrogenic activity in human hepatic stellate cells in vitro. Collectively, sevelamer inhibited the development of murine steatohepatitis by reducing hepatic LPS overload.博士(医学)・甲第779号・令和3年3月15日© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)

    The case of double primary lung adenocarcinomas with an EGFR mutation and ALK translocation successfully treated with alectinib at the post-surgicalrecurrence

    Get PDF
    A 36-year-old male was found two nodules in the right lower lobe of the lung. After the surgical resection, both lesions were diagnosed as invasive adenocarcinomas. One lesion was primarily lepidic growth component with EGFR-L858R mutation, and the other was micropapillary component with ALK translocation accompanying mediastinal lymphnode metastases. While he experienced disease recurrence, the disease was controlled by an ALK inhibitor, given based on the findings of surgical specimens. This is the first case who had two simultaneous lung cancers with EGFR mutation and ALK translocation in each respective lesion, and was successfully treated with ALK inhibitor at the post-surgical recurrence

    エスジーエルティー2阻害薬(カナグリフロジン)およびジペプチジルペプチダーゼ4阻害薬(テネリグリプチン)との併用療法は非糖尿病ラットモデルにおける非アルコール性脂肪肝炎の進行を抑制する

    Get PDF
    Hepatocellular carcinoma (HCC) is the strongest independent predictor of mortality in non-alcoholic steatohepatitis (NASH)-related cirrhosis. The effects and mechanisms of combination of sodium-dependent glucose cotransporter inhibitor and canagliflozin (CA) and dipeptidyl peptidase-4 inhibitor and teneligliptin (TE) on non-diabetic NASH progression were examined. CA and TE suppressed choline-deficient, L-amino acid-defined diet-induced hepatic fibrogenesis and carcinogenesis. CA alone or with TE significantly decreased proinflammatory cytokine expression. CA and TE significantly attenuated hepatic lipid peroxidation. In vitro studies showed that TE alone or with CA inhibited cell proliferation and TGF-β1 and α1 (I)-procollagen mRNA expression in Ac-HSCs. CA+TE inhibited liver fibrogenesis by attenuating hepatic lipid peroxidation and inflammation and by inhibiting Ac-HSC proliferation with concomitant attenuation of hepatic lipid peroxidation. Moreover, CA+TE suppressed in vivo angiogenesis and oxidative DNA damage. CA or CA+TE inhibited HCC cells and human umbilical vein endothelial cell (HUVEC) proliferation. CA+TE suppressed vascular endothelial growth factor expression and promoted increased E-cadherin expression in HUVECs. CA+TE potentially exerts synergistic effects on hepatocarcinogenesis prevention by suppressing HCC cell proliferation and angiogenesis and concomitantly reducing oxidative stress and by inhibiting angiogenesis with attenuation of oxidative stress. CA+TE showed chemopreventive effects on NASH progression compared with single agent in non-diabetic rat model of NASH, concurrent with Ac-HSC and HCC cell proliferation, angiogenesis oxidative stress, and inflammation. Both agents are widely, safely used in clinical practice; combined treatment may represent a potential strategy against NASH.博士(医学)・甲第765号・令和3年3月15日© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)

    肝線維化に対するファルネソイドX受容体アゴニストとジペプチジルペプチダーゼ-4阻害薬の併用効果

    Get PDF
    Aim: Non-alcoholic steatohepatitis (NASH) has a broad clinicopathological spectrum (inflammation to severe fibrosis). The farnesoid X receptor agonist obeticholic acid (OCA) ameliorates the histological features of NASH; satisfactory antifibrotic effects have not yet been reported. Here, we investigated the combined effects of OCA + a dipeptidyl peptidase-4 inhibitor (sitagliptin) on hepatic fibrogenesis in a rat model of NASH. Methods: Fifty Fischer 344 rats were fed a choline-deficient L-amino-acid-defined (CDAA) diet for 12 weeks. The in vitro and in vivo effects of OCA + sitagliptin were assessed along with hepatic fibrogenesis, lipopolysaccharide-Toll-like receptor 4 (TLR4) regulatory cascade and intestinal barrier function. Direct inhibitory effects of OCA + sitagliptin on activated hepatic stellate cells (Ac-HSCs) were assessed in vitro. Results: Treatment with OCA + sitagliptin potentially inhibited hepatic fibrogenesis along with Ac-HSC proliferation and hepatic transforming growth factor (TGF)-β1, α1(I)-procollagen, and tissue inhibitor of metalloproteinase-1 (TIMP-1) mRNA expression and hydroxyproline levels. Obeticholic acid inhibited hepatic TLR4 expression and increased hepatic matrix metalloproteinase-2 expression. Obeticholic acid decreased intestinal permeability by ameliorating CDAA diet-induced zonula occludens-1 disruption, whereas sitagliptin directly inhibited Ac-HSC proliferation. The in vitro suppressive effects of OCA + sitagliptin on TGF-β1 and α1(I)-procollagen mRNA expression and p38 phosphorylation in Ac-HSCs were almost consistent. Sitagliptin directly inhibited the regulation of Ac-HSC. Conclusions: Treatment with OCA + sitagliptin synergistically affected hepatic fibrogenesis by counteracting endotoxemia induced by intestinal barrier dysfunction and suppressing Ac-HSC proliferation. Thus, OCA + sitagliptin could be a promising therapeutic strategy for NASH.博士(医学)・甲第737号・令和2年3月16日© 2019 The Japan Society of HepatologyThis is the peer reviewed version of the following article: [https://onlinelibrary.wiley.com/doi/full/10.1111/hepr.13385], which has been published in final form at [https://doi.org/10.1111/hepr.13385]. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions

    トウモロコシごま葉枯病菌の病原性、有性的・無性的形態形成を制御する情報伝達因子の機能解析

    Get PDF
    京都大学0048新制・課程博士博士(農学)甲第21840号農博第2353号新制||農||1069(附属図書館)学位論文||H31||N5212(農学部図書室)京都大学大学院農学研究科地域環境科学専攻(主査)教授 田中 千尋, 教授 本田 与一, 准教授 刑部 正博学位規則第4条第1項該当Doctor of Agricultural ScienceKyoto UniversityDGA
    corecore